{"title":"人体骨骼肌在 5 天干浸泡后力量损失的分子决定因素","authors":"Mathias Velarde, Michel-Yves Sempore, Valentine Allibert, Valérie Montel, Josiane Castells, Loïc Treffel, Angèle Chopard, Thomas Brioche, Laetitia Cochon, Jérome Morel, Bruno Bastide, Anne-Cécile Durieux, Laurence Stevens, Damien Freyssenet","doi":"10.1002/jcsm.13559","DOIUrl":null,"url":null,"abstract":"Astronauts in Earth's orbit experience microgravity, resulting in a decline of skeletal muscle mass and function. On Earth, models simulating microgravity have shown that the extent of the loss in muscle force is greater than the loss in muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. In the present study, we hypothesize that alongside the loss in skeletal muscle mass, modifications in the expression profile of genes encoding critical determinants of resting membrane potential, excitation-contraction coupling and Ca<sup>2+</sup> handling contribute to the decline in skeletal muscle force.","PeriodicalId":186,"journal":{"name":"Journal of Cachexia, Sarcopenia and Muscle","volume":"35 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular determinants of skeletal muscle force loss in response to 5 days of dry immersion in human\",\"authors\":\"Mathias Velarde, Michel-Yves Sempore, Valentine Allibert, Valérie Montel, Josiane Castells, Loïc Treffel, Angèle Chopard, Thomas Brioche, Laetitia Cochon, Jérome Morel, Bruno Bastide, Anne-Cécile Durieux, Laurence Stevens, Damien Freyssenet\",\"doi\":\"10.1002/jcsm.13559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Astronauts in Earth's orbit experience microgravity, resulting in a decline of skeletal muscle mass and function. On Earth, models simulating microgravity have shown that the extent of the loss in muscle force is greater than the loss in muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. In the present study, we hypothesize that alongside the loss in skeletal muscle mass, modifications in the expression profile of genes encoding critical determinants of resting membrane potential, excitation-contraction coupling and Ca<sup>2+</sup> handling contribute to the decline in skeletal muscle force.\",\"PeriodicalId\":186,\"journal\":{\"name\":\"Journal of Cachexia, Sarcopenia and Muscle\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cachexia, Sarcopenia and Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jcsm.13559\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia, Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcsm.13559","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular determinants of skeletal muscle force loss in response to 5 days of dry immersion in human
Astronauts in Earth's orbit experience microgravity, resulting in a decline of skeletal muscle mass and function. On Earth, models simulating microgravity have shown that the extent of the loss in muscle force is greater than the loss in muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. In the present study, we hypothesize that alongside the loss in skeletal muscle mass, modifications in the expression profile of genes encoding critical determinants of resting membrane potential, excitation-contraction coupling and Ca2+ handling contribute to the decline in skeletal muscle force.
期刊介绍:
The Journal of Cachexia, Sarcopenia, and Muscle is a prestigious, peer-reviewed international publication committed to disseminating research and clinical insights pertaining to cachexia, sarcopenia, body composition, and the physiological and pathophysiological alterations occurring throughout the lifespan and in various illnesses across the spectrum of life sciences. This journal serves as a valuable resource for physicians, biochemists, biologists, dieticians, pharmacologists, and students alike.