Tadeusz Bak, SA Sherif, David StClair Black, Janusz Nowotny
{"title":"二氧化钛(金红石)的缺陷化学。迈向可持续能源","authors":"Tadeusz Bak, SA Sherif, David StClair Black, Janusz Nowotny","doi":"10.1021/acs.chemrev.4c00185","DOIUrl":null,"url":null,"abstract":"This work, which overviews defect chemistry of TiO<sub>2</sub> (rutile), is focused on atomic-size structural defects that are thermodynamically reversible. Here it is shown that thermodynamics can be used in defect engineering of TiO<sub>2</sub>-based energy materials, such as photoelectrodes and photocatalysts. We show that surface segregation of defects leads to the building-up of new surface structures that are responsible for reactivity. Since rational design of surface properties requires <i>in situ</i> surface characterization in operational conditions, expansion of bulk defect chemistry to surface defect chemistry requires a defect-related surface-sensitive tool for <i>in situ</i> monitoring of defect-related properties at elevated temperatures corresponding to defect equilibria and in a controlled gas-phase environment. Here we show that the high-temperature electron probe is a defect-related surface-sensitive tool that is uniquely positioned to aid surface defect engineering and determine unequivocal surface properties. The related applied aspects are considered for photoelectrochemical water splitting and the performance of solid oxide fuel cells. Here we report that trail-blazing studies on <i>in situ</i> surface monitoring of TiO<sub>2</sub> during gas/solid equilibration, along with <i>in situ</i> characterization of surface semiconducting properties, leads to the discovery of a segregation-induced low-dimensional surface structure that is responsible for stable performance of oxide semiconductors, such as TiO<sub>2</sub>, in operational conditions.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"236 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect Chemistry of Titanium Dioxide (Rutile). Progress Toward Sustainable Energy\",\"authors\":\"Tadeusz Bak, SA Sherif, David StClair Black, Janusz Nowotny\",\"doi\":\"10.1021/acs.chemrev.4c00185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work, which overviews defect chemistry of TiO<sub>2</sub> (rutile), is focused on atomic-size structural defects that are thermodynamically reversible. Here it is shown that thermodynamics can be used in defect engineering of TiO<sub>2</sub>-based energy materials, such as photoelectrodes and photocatalysts. We show that surface segregation of defects leads to the building-up of new surface structures that are responsible for reactivity. Since rational design of surface properties requires <i>in situ</i> surface characterization in operational conditions, expansion of bulk defect chemistry to surface defect chemistry requires a defect-related surface-sensitive tool for <i>in situ</i> monitoring of defect-related properties at elevated temperatures corresponding to defect equilibria and in a controlled gas-phase environment. Here we show that the high-temperature electron probe is a defect-related surface-sensitive tool that is uniquely positioned to aid surface defect engineering and determine unequivocal surface properties. The related applied aspects are considered for photoelectrochemical water splitting and the performance of solid oxide fuel cells. Here we report that trail-blazing studies on <i>in situ</i> surface monitoring of TiO<sub>2</sub> during gas/solid equilibration, along with <i>in situ</i> characterization of surface semiconducting properties, leads to the discovery of a segregation-induced low-dimensional surface structure that is responsible for stable performance of oxide semiconductors, such as TiO<sub>2</sub>, in operational conditions.\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrev.4c00185\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00185","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Defect Chemistry of Titanium Dioxide (Rutile). Progress Toward Sustainable Energy
This work, which overviews defect chemistry of TiO2 (rutile), is focused on atomic-size structural defects that are thermodynamically reversible. Here it is shown that thermodynamics can be used in defect engineering of TiO2-based energy materials, such as photoelectrodes and photocatalysts. We show that surface segregation of defects leads to the building-up of new surface structures that are responsible for reactivity. Since rational design of surface properties requires in situ surface characterization in operational conditions, expansion of bulk defect chemistry to surface defect chemistry requires a defect-related surface-sensitive tool for in situ monitoring of defect-related properties at elevated temperatures corresponding to defect equilibria and in a controlled gas-phase environment. Here we show that the high-temperature electron probe is a defect-related surface-sensitive tool that is uniquely positioned to aid surface defect engineering and determine unequivocal surface properties. The related applied aspects are considered for photoelectrochemical water splitting and the performance of solid oxide fuel cells. Here we report that trail-blazing studies on in situ surface monitoring of TiO2 during gas/solid equilibration, along with in situ characterization of surface semiconducting properties, leads to the discovery of a segregation-induced low-dimensional surface structure that is responsible for stable performance of oxide semiconductors, such as TiO2, in operational conditions.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.