Qingqing Zhou, Qihang Ding, Zixun Geng, Chencheng Hu, Long Yang, Zitong Kan, Biao Dong, Miae Won, Hongwei Song, Lin Xu, Jong Seung Kim
{"title":"由三维导电 MOF 网络组装的与人工表皮共轭的柔性智能医疗保健平台,用于气体和压力传感","authors":"Qingqing Zhou, Qihang Ding, Zixun Geng, Chencheng Hu, Long Yang, Zitong Kan, Biao Dong, Miae Won, Hongwei Song, Lin Xu, Jong Seung Kim","doi":"10.1007/s40820-024-01548-5","DOIUrl":null,"url":null,"abstract":"<div><p>The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare. Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli. However, realistic mimesis, both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities, remains a challenging yet vital need for simplifying the design of flexible logic circuits. Herein, we construct an artificial epidermal device by in situ growing Cu<sub>3</sub>(HHTP)<sub>2</sub> particles onto the hollow spherical Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> surface, aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis. The bionic Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@Cu<sub>3</sub>(HHTP)<sub>2</sub> exhibits independent NO<sub>2</sub> and pressure response, as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication. Ultimately, a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits. This system can assess risk factors related with asthmatic, such as stimulation of external NO<sub>2</sub> gas, abnormal expiratory behavior and exertion degrees of fingers, achieving a recognition accuracy of 97.6% as assisted by a machine learning algorithm. Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01548-5.pdf","citationCount":"0","resultStr":"{\"title\":\"A Flexible Smart Healthcare Platform Conjugated with Artificial Epidermis Assembled by Three-Dimensionally Conductive MOF Network for Gas and Pressure Sensing\",\"authors\":\"Qingqing Zhou, Qihang Ding, Zixun Geng, Chencheng Hu, Long Yang, Zitong Kan, Biao Dong, Miae Won, Hongwei Song, Lin Xu, Jong Seung Kim\",\"doi\":\"10.1007/s40820-024-01548-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare. Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli. However, realistic mimesis, both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities, remains a challenging yet vital need for simplifying the design of flexible logic circuits. Herein, we construct an artificial epidermal device by in situ growing Cu<sub>3</sub>(HHTP)<sub>2</sub> particles onto the hollow spherical Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> surface, aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis. The bionic Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>@Cu<sub>3</sub>(HHTP)<sub>2</sub> exhibits independent NO<sub>2</sub> and pressure response, as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication. Ultimately, a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits. This system can assess risk factors related with asthmatic, such as stimulation of external NO<sub>2</sub> gas, abnormal expiratory behavior and exertion degrees of fingers, achieving a recognition accuracy of 97.6% as assisted by a machine learning algorithm. Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01548-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01548-5\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01548-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
A Flexible Smart Healthcare Platform Conjugated with Artificial Epidermis Assembled by Three-Dimensionally Conductive MOF Network for Gas and Pressure Sensing
The rising flexible and intelligent electronics greatly facilitate the noninvasive and timely tracking of physiological information in telemedicine healthcare. Meticulously building bionic-sensitive moieties is vital for designing efficient electronic skin with advanced cognitive functionalities to pluralistically capture external stimuli. However, realistic mimesis, both in the skin’s three-dimensional interlocked hierarchical structures and synchronous encoding multistimuli information capacities, remains a challenging yet vital need for simplifying the design of flexible logic circuits. Herein, we construct an artificial epidermal device by in situ growing Cu3(HHTP)2 particles onto the hollow spherical Ti3C2Tx surface, aiming to concurrently emulate the spinous and granular layers of the skin’s epidermis. The bionic Ti3C2Tx@Cu3(HHTP)2 exhibits independent NO2 and pressure response, as well as novel functionalities such as acoustic signature perception and Morse code-encrypted message communication. Ultimately, a wearable alarming system with a mobile application terminal is self-developed by integrating the bimodular senor into flexible printed circuits. This system can assess risk factors related with asthmatic, such as stimulation of external NO2 gas, abnormal expiratory behavior and exertion degrees of fingers, achieving a recognition accuracy of 97.6% as assisted by a machine learning algorithm. Our work provides a feasible routine to develop intelligent multifunctional healthcare equipment for burgeoning transformative telemedicine diagnosis.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.