{"title":"缺氧植物的代谢策略","authors":"Hans van Veen, Paolo Maria Triozzi, Elena Loreti","doi":"10.1093/plphys/kiae564","DOIUrl":null,"url":null,"abstract":"Complex multicellular organisms have evolved in an oxygen-enriched atmosphere. Oxygen is therefore essential for all aerobic organisms including plants, for energy production through cellular respiration. However, plants can experience hypoxia following extreme flooding events and also under aerated conditions in proliferative organs or tissues characterized by high oxygen consumption. When oxygen availability is compromised, plants adopt different strategies to cope with hypoxia and limited aeration. A common feature among different plant species is the activation of an anaerobic fermentative metabolism to provide adenosine triphosphate (ATP) to maintain cellular homeostasis under hypoxia. Fermentation also requires many sugar substrates, which is not always feasible, and alternative metabolic strategies are thus needed. Recent findings have also shown that the hypoxic metabolism is also active in specific organs or tissues of the plant under aerated conditions. Here, we describe the regulatory mechanisms that control the metabolic strategies of plants and how they enable them to thrive despite challenging conditions. A comprehensive mechanistic understanding of the genetic and physiological components underlying hypoxic metabolism should help to provide opportunities to improve plant resilience under the current climate change scenario.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"236 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic strategies in hypoxic plants\",\"authors\":\"Hans van Veen, Paolo Maria Triozzi, Elena Loreti\",\"doi\":\"10.1093/plphys/kiae564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex multicellular organisms have evolved in an oxygen-enriched atmosphere. Oxygen is therefore essential for all aerobic organisms including plants, for energy production through cellular respiration. However, plants can experience hypoxia following extreme flooding events and also under aerated conditions in proliferative organs or tissues characterized by high oxygen consumption. When oxygen availability is compromised, plants adopt different strategies to cope with hypoxia and limited aeration. A common feature among different plant species is the activation of an anaerobic fermentative metabolism to provide adenosine triphosphate (ATP) to maintain cellular homeostasis under hypoxia. Fermentation also requires many sugar substrates, which is not always feasible, and alternative metabolic strategies are thus needed. Recent findings have also shown that the hypoxic metabolism is also active in specific organs or tissues of the plant under aerated conditions. Here, we describe the regulatory mechanisms that control the metabolic strategies of plants and how they enable them to thrive despite challenging conditions. A comprehensive mechanistic understanding of the genetic and physiological components underlying hypoxic metabolism should help to provide opportunities to improve plant resilience under the current climate change scenario.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae564\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae564","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Complex multicellular organisms have evolved in an oxygen-enriched atmosphere. Oxygen is therefore essential for all aerobic organisms including plants, for energy production through cellular respiration. However, plants can experience hypoxia following extreme flooding events and also under aerated conditions in proliferative organs or tissues characterized by high oxygen consumption. When oxygen availability is compromised, plants adopt different strategies to cope with hypoxia and limited aeration. A common feature among different plant species is the activation of an anaerobic fermentative metabolism to provide adenosine triphosphate (ATP) to maintain cellular homeostasis under hypoxia. Fermentation also requires many sugar substrates, which is not always feasible, and alternative metabolic strategies are thus needed. Recent findings have also shown that the hypoxic metabolism is also active in specific organs or tissues of the plant under aerated conditions. Here, we describe the regulatory mechanisms that control the metabolic strategies of plants and how they enable them to thrive despite challenging conditions. A comprehensive mechanistic understanding of the genetic and physiological components underlying hypoxic metabolism should help to provide opportunities to improve plant resilience under the current climate change scenario.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.