Carolin Fritz, Theresa Maria Reimann, Jeremy Adler, Johanna Knab, Sylwia Schulmeister, Choy Kriechbaum, Sabine Müller, Ingela Parmryd, Benedikt Kost
{"title":"质膜和细胞质分区:花粉管尖端生长所需的动态结构框架","authors":"Carolin Fritz, Theresa Maria Reimann, Jeremy Adler, Johanna Knab, Sylwia Schulmeister, Choy Kriechbaum, Sabine Müller, Ingela Parmryd, Benedikt Kost","doi":"10.1093/plphys/kiae558","DOIUrl":null,"url":null,"abstract":"Rapid, unidirectional pollen tube tip growth is essential for fertilization and is widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains 1) enriched in key signaling proteins or lipids, 2) displaying high membrane order, or 3) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included into this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A (BFA) treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which 1) enhance our understanding of cellular and regulatory processes underlying tip growth, and 2) highlight important areas of future research.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"14 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma membrane and cytoplasmic compartmentalization: a dynamic structural framework required for pollen tube tip growth\",\"authors\":\"Carolin Fritz, Theresa Maria Reimann, Jeremy Adler, Johanna Knab, Sylwia Schulmeister, Choy Kriechbaum, Sabine Müller, Ingela Parmryd, Benedikt Kost\",\"doi\":\"10.1093/plphys/kiae558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid, unidirectional pollen tube tip growth is essential for fertilization and is widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains 1) enriched in key signaling proteins or lipids, 2) displaying high membrane order, or 3) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included into this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A (BFA) treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which 1) enhance our understanding of cellular and regulatory processes underlying tip growth, and 2) highlight important areas of future research.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiae558\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae558","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Plasma membrane and cytoplasmic compartmentalization: a dynamic structural framework required for pollen tube tip growth
Rapid, unidirectional pollen tube tip growth is essential for fertilization and is widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains 1) enriched in key signaling proteins or lipids, 2) displaying high membrane order, or 3) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included into this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A (BFA) treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which 1) enhance our understanding of cellular and regulatory processes underlying tip growth, and 2) highlight important areas of future research.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.