Etelvino Henrique Novotny, Eduardo Ribeiro de Azevedo, Jie Wang, Evan McCarney, Petrik Galvosas
{"title":"低场固态核磁共振作为肥料溶解监测的一种方法","authors":"Etelvino Henrique Novotny, Eduardo Ribeiro de Azevedo, Jie Wang, Evan McCarney, Petrik Galvosas","doi":"10.1007/s00374-024-01876-z","DOIUrl":null,"url":null,"abstract":"<p>The dissolution of fertilisers is the initial process that takes place in soils following fertiliser application and influences the fate and effectiveness of fertilisers. Currently, there are only a few methods for studying fertiliser dissolution in soil. These approaches typically do not accurately represent real soil-fertiliser systems and are susceptible to errors, since they are influenced by processes associated with the loss or retention of the trace ions of the fertiliser. Low field NMR or time-domain NMR (<sup>1</sup>H-TDNMR) is typically employed for studying <sup>1</sup>H in fluids (or mobile <sup>1</sup>H), however, special pulse sequences enable the selective detection of <sup>1</sup>H in solids. Furthermore, it is possible to filter out undesired signals like <sup>1</sup>H from minerals and from soil organic matter. This allows for the detection and monitoring of <sup>1</sup>H only from protonated fertilisers (e.g., ammonia, (di)-hydrogen phosphates, etc.). The aim of this study is to present an efficient procedure which monitors the dissolution of fertilisers in soils using <sup>1</sup>H-TDNMR. For this, six contrasting New Zealand soils and four protonated fertilisers - NH<sub>4</sub>Cl, NH<sub>4</sub>NO<sub>3</sub>, NaH<sub>2</sub>PO<sub>4</sub>.H<sub>2</sub>O, and (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> - were utilised. The proposed method efficiently, accurately, and precisely, monitored the dissolution of the studied fertilisers in all the tested soils under different rain regimes, from violent rain (60 mm h<sup>− 1</sup>) to light rain (2 mm h<sup>− 1</sup>) with a time interval (temporal resolution) as short as 5 s.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-state nuclear magnetic resonance at low-field as an approach for fertiliser dissolution monitoring\",\"authors\":\"Etelvino Henrique Novotny, Eduardo Ribeiro de Azevedo, Jie Wang, Evan McCarney, Petrik Galvosas\",\"doi\":\"10.1007/s00374-024-01876-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dissolution of fertilisers is the initial process that takes place in soils following fertiliser application and influences the fate and effectiveness of fertilisers. Currently, there are only a few methods for studying fertiliser dissolution in soil. These approaches typically do not accurately represent real soil-fertiliser systems and are susceptible to errors, since they are influenced by processes associated with the loss or retention of the trace ions of the fertiliser. Low field NMR or time-domain NMR (<sup>1</sup>H-TDNMR) is typically employed for studying <sup>1</sup>H in fluids (or mobile <sup>1</sup>H), however, special pulse sequences enable the selective detection of <sup>1</sup>H in solids. Furthermore, it is possible to filter out undesired signals like <sup>1</sup>H from minerals and from soil organic matter. This allows for the detection and monitoring of <sup>1</sup>H only from protonated fertilisers (e.g., ammonia, (di)-hydrogen phosphates, etc.). The aim of this study is to present an efficient procedure which monitors the dissolution of fertilisers in soils using <sup>1</sup>H-TDNMR. For this, six contrasting New Zealand soils and four protonated fertilisers - NH<sub>4</sub>Cl, NH<sub>4</sub>NO<sub>3</sub>, NaH<sub>2</sub>PO<sub>4</sub>.H<sub>2</sub>O, and (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> - were utilised. The proposed method efficiently, accurately, and precisely, monitored the dissolution of the studied fertilisers in all the tested soils under different rain regimes, from violent rain (60 mm h<sup>− 1</sup>) to light rain (2 mm h<sup>− 1</sup>) with a time interval (temporal resolution) as short as 5 s.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-024-01876-z\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01876-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Solid-state nuclear magnetic resonance at low-field as an approach for fertiliser dissolution monitoring
The dissolution of fertilisers is the initial process that takes place in soils following fertiliser application and influences the fate and effectiveness of fertilisers. Currently, there are only a few methods for studying fertiliser dissolution in soil. These approaches typically do not accurately represent real soil-fertiliser systems and are susceptible to errors, since they are influenced by processes associated with the loss or retention of the trace ions of the fertiliser. Low field NMR or time-domain NMR (1H-TDNMR) is typically employed for studying 1H in fluids (or mobile 1H), however, special pulse sequences enable the selective detection of 1H in solids. Furthermore, it is possible to filter out undesired signals like 1H from minerals and from soil organic matter. This allows for the detection and monitoring of 1H only from protonated fertilisers (e.g., ammonia, (di)-hydrogen phosphates, etc.). The aim of this study is to present an efficient procedure which monitors the dissolution of fertilisers in soils using 1H-TDNMR. For this, six contrasting New Zealand soils and four protonated fertilisers - NH4Cl, NH4NO3, NaH2PO4.H2O, and (NH4)2HPO4 - were utilised. The proposed method efficiently, accurately, and precisely, monitored the dissolution of the studied fertilisers in all the tested soils under different rain regimes, from violent rain (60 mm h− 1) to light rain (2 mm h− 1) with a time interval (temporal resolution) as short as 5 s.
期刊介绍:
Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.