Jihee Kang, Hye-Yoon Jeon, Jieon Lee, Seri Bae, Ga Young Park, Kyoung-jin Min, Jeongmin Joo, Ah-Jun Lee, Hyo-Ji Kim, Chun Young Im, Eun-Bin Kim, Ji Hun Lee, Ji Sun Hwang, Seungju Lee, Jee-Young Lee, Pauline Navals, Jeffrey W. Keillor, Kwon-Soo Ha, Minsoo Song
{"title":"用于治疗糖尿病视网膜病变的基于 7-氨基喹啉-5,8-二酮支架的结构最小化和药物样 TGase2 抑制剂","authors":"Jihee Kang, Hye-Yoon Jeon, Jieon Lee, Seri Bae, Ga Young Park, Kyoung-jin Min, Jeongmin Joo, Ah-Jun Lee, Hyo-Ji Kim, Chun Young Im, Eun-Bin Kim, Ji Hun Lee, Ji Sun Hwang, Seungju Lee, Jee-Young Lee, Pauline Navals, Jeffrey W. Keillor, Kwon-Soo Ha, Minsoo Song","doi":"10.1021/acs.jmedchem.4c02081","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy is a disease that can cause vision loss leading to blindness in people with diabetes. Improved methods to treat and prevent vision loss in diabetic patients are in high demand owing to limited current treatment procedures. Herein, we report a new class of transglutaminase 2 (TGase2) inhibitors for the treatment of diabetic retinopathy based on 7-aminoquinoline-5,8-dione derivatives. 7-Amino-2-phenylquinoline-5,8-dione <b>11</b> and 7-amino-2-{4-[(1-methylpiperidin-4-yl)oxy]phenyl}quinoline-5,8-dione <b>23</b> exhibited potent inhibitory activities against TGase2 in a fibrinogen array-based on-chip TGase2 activity assay and in an in situ assay in human retinal microvascular endothelial cells, with IC<sub>50</sub> values of 5.88 and 1.12 μM in vitro, and 0.09 and 0.07 μM in situ, respectively. Pharmacokinetically favorable 7-amino-2-{4-[(1-isopropylpiperidin-4-yl)oxy] phenyl}quinoline-5,8-dione <b>22</b> inhibited vascular leakage in the retinas of streptozotocin-induced diabetic mice via oral administration. Results from the AL5 kinetic assay and a molecular docking study suggest that the inhibitors may bind to TGase2 remote from the active site.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structurally Minimalized and Druglike TGase2 Inhibitors Based on 7-Aminoquinoline-5,8-dione Scaffolds for the Treatment of Diabetic Retinopathy\",\"authors\":\"Jihee Kang, Hye-Yoon Jeon, Jieon Lee, Seri Bae, Ga Young Park, Kyoung-jin Min, Jeongmin Joo, Ah-Jun Lee, Hyo-Ji Kim, Chun Young Im, Eun-Bin Kim, Ji Hun Lee, Ji Sun Hwang, Seungju Lee, Jee-Young Lee, Pauline Navals, Jeffrey W. Keillor, Kwon-Soo Ha, Minsoo Song\",\"doi\":\"10.1021/acs.jmedchem.4c02081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy is a disease that can cause vision loss leading to blindness in people with diabetes. Improved methods to treat and prevent vision loss in diabetic patients are in high demand owing to limited current treatment procedures. Herein, we report a new class of transglutaminase 2 (TGase2) inhibitors for the treatment of diabetic retinopathy based on 7-aminoquinoline-5,8-dione derivatives. 7-Amino-2-phenylquinoline-5,8-dione <b>11</b> and 7-amino-2-{4-[(1-methylpiperidin-4-yl)oxy]phenyl}quinoline-5,8-dione <b>23</b> exhibited potent inhibitory activities against TGase2 in a fibrinogen array-based on-chip TGase2 activity assay and in an in situ assay in human retinal microvascular endothelial cells, with IC<sub>50</sub> values of 5.88 and 1.12 μM in vitro, and 0.09 and 0.07 μM in situ, respectively. Pharmacokinetically favorable 7-amino-2-{4-[(1-isopropylpiperidin-4-yl)oxy] phenyl}quinoline-5,8-dione <b>22</b> inhibited vascular leakage in the retinas of streptozotocin-induced diabetic mice via oral administration. Results from the AL5 kinetic assay and a molecular docking study suggest that the inhibitors may bind to TGase2 remote from the active site.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c02081\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02081","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structurally Minimalized and Druglike TGase2 Inhibitors Based on 7-Aminoquinoline-5,8-dione Scaffolds for the Treatment of Diabetic Retinopathy
Diabetic retinopathy is a disease that can cause vision loss leading to blindness in people with diabetes. Improved methods to treat and prevent vision loss in diabetic patients are in high demand owing to limited current treatment procedures. Herein, we report a new class of transglutaminase 2 (TGase2) inhibitors for the treatment of diabetic retinopathy based on 7-aminoquinoline-5,8-dione derivatives. 7-Amino-2-phenylquinoline-5,8-dione 11 and 7-amino-2-{4-[(1-methylpiperidin-4-yl)oxy]phenyl}quinoline-5,8-dione 23 exhibited potent inhibitory activities against TGase2 in a fibrinogen array-based on-chip TGase2 activity assay and in an in situ assay in human retinal microvascular endothelial cells, with IC50 values of 5.88 and 1.12 μM in vitro, and 0.09 and 0.07 μM in situ, respectively. Pharmacokinetically favorable 7-amino-2-{4-[(1-isopropylpiperidin-4-yl)oxy] phenyl}quinoline-5,8-dione 22 inhibited vascular leakage in the retinas of streptozotocin-induced diabetic mice via oral administration. Results from the AL5 kinetic assay and a molecular docking study suggest that the inhibitors may bind to TGase2 remote from the active site.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.