Yiding Li, John J. Briguglio, Sandro Romani, Jeffrey C. Magee
{"title":"海马 CA3 区记忆支持神经元动力学机制","authors":"Yiding Li, John J. Briguglio, Sandro Romani, Jeffrey C. Magee","doi":"10.1016/j.cell.2024.09.041","DOIUrl":null,"url":null,"abstract":"Hippocampal CA3 is central to memory formation and retrieval. Although various network mechanisms have been proposed, direct evidence is lacking. Using intracellular V<sub>m</sub> recordings and optogenetic manipulations in behaving mice, we found that CA3 place-field activity is produced by a symmetric form of behavioral timescale synaptic plasticity (BTSP) at recurrent synapses among CA3 pyramidal neurons but not at synapses from the dentate gyrus (DG). Additional manipulations revealed that excitatory input from the entorhinal cortex (EC) but not the DG was required to update place cell activity based on the animal’s movement. These data were captured by a computational model that used BTSP and an external updating input to produce attractor dynamics under online learning conditions. Theoretical analyses further highlight the superior memory storage capacity of such networks, especially when dealing with correlated input patterns. This evidence elucidates the cellular and circuit mechanisms of learning and memory formation in the hippocampus.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"5 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3\",\"authors\":\"Yiding Li, John J. Briguglio, Sandro Romani, Jeffrey C. Magee\",\"doi\":\"10.1016/j.cell.2024.09.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hippocampal CA3 is central to memory formation and retrieval. Although various network mechanisms have been proposed, direct evidence is lacking. Using intracellular V<sub>m</sub> recordings and optogenetic manipulations in behaving mice, we found that CA3 place-field activity is produced by a symmetric form of behavioral timescale synaptic plasticity (BTSP) at recurrent synapses among CA3 pyramidal neurons but not at synapses from the dentate gyrus (DG). Additional manipulations revealed that excitatory input from the entorhinal cortex (EC) but not the DG was required to update place cell activity based on the animal’s movement. These data were captured by a computational model that used BTSP and an external updating input to produce attractor dynamics under online learning conditions. Theoretical analyses further highlight the superior memory storage capacity of such networks, especially when dealing with correlated input patterns. This evidence elucidates the cellular and circuit mechanisms of learning and memory formation in the hippocampus.\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.09.041\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.09.041","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanisms of memory-supporting neuronal dynamics in hippocampal area CA3
Hippocampal CA3 is central to memory formation and retrieval. Although various network mechanisms have been proposed, direct evidence is lacking. Using intracellular Vm recordings and optogenetic manipulations in behaving mice, we found that CA3 place-field activity is produced by a symmetric form of behavioral timescale synaptic plasticity (BTSP) at recurrent synapses among CA3 pyramidal neurons but not at synapses from the dentate gyrus (DG). Additional manipulations revealed that excitatory input from the entorhinal cortex (EC) but not the DG was required to update place cell activity based on the animal’s movement. These data were captured by a computational model that used BTSP and an external updating input to produce attractor dynamics under online learning conditions. Theoretical analyses further highlight the superior memory storage capacity of such networks, especially when dealing with correlated input patterns. This evidence elucidates the cellular and circuit mechanisms of learning and memory formation in the hippocampus.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.