{"title":"干旱地区绿洲水库-濒危森林系统的降温效应","authors":"Yinying Jiao, Guofeng Zhu, Siyu Lu, Linlin Ye, Dongdong Qiu, Gaojia Meng, Qinqin Wang, Rui Li, Longhu Chen, Yuhao Wang, Dehong Si, Wentong Li","doi":"10.1029/2024wr038301","DOIUrl":null,"url":null,"abstract":"In arid regions with limited water resources, numerous reservoirs have been built to support economic and social development. However, how the construction of reservoirs interacts with the surrounding ecosystem to affect temperature remains unclear. Spanning 2018 to 2022 in the Shiyang River Basin, we collected surface water and precipitation, as well as stem and soil samples. Using isotopic methods, we quantified how evaporation in the oasis reservoir-riparian forest system affects the local climate. Our findings show that the latent heat released by evapotranspiration from the reservoir and riparian forest system reduces the daily maximum temperature and daily temperature range by 7°C and 6°C respectively, compared to downstream areas with sparse vegetation around artificial lakes. Additionally, it enhances local moisture recycling, increasing precipitation. This study reveals regional cooling effect due to interactions between water bodies, the atmosphere, and vegetation. We propose that establishing reservoir-riparian forest systems can positively impact local climate regulation and serve as an effective strategy for adapting to global climate warming.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cooling Effect of Oasis Reservoir-Riparian Forest Systems in Arid Regions\",\"authors\":\"Yinying Jiao, Guofeng Zhu, Siyu Lu, Linlin Ye, Dongdong Qiu, Gaojia Meng, Qinqin Wang, Rui Li, Longhu Chen, Yuhao Wang, Dehong Si, Wentong Li\",\"doi\":\"10.1029/2024wr038301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In arid regions with limited water resources, numerous reservoirs have been built to support economic and social development. However, how the construction of reservoirs interacts with the surrounding ecosystem to affect temperature remains unclear. Spanning 2018 to 2022 in the Shiyang River Basin, we collected surface water and precipitation, as well as stem and soil samples. Using isotopic methods, we quantified how evaporation in the oasis reservoir-riparian forest system affects the local climate. Our findings show that the latent heat released by evapotranspiration from the reservoir and riparian forest system reduces the daily maximum temperature and daily temperature range by 7°C and 6°C respectively, compared to downstream areas with sparse vegetation around artificial lakes. Additionally, it enhances local moisture recycling, increasing precipitation. This study reveals regional cooling effect due to interactions between water bodies, the atmosphere, and vegetation. We propose that establishing reservoir-riparian forest systems can positively impact local climate regulation and serve as an effective strategy for adapting to global climate warming.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr038301\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038301","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Cooling Effect of Oasis Reservoir-Riparian Forest Systems in Arid Regions
In arid regions with limited water resources, numerous reservoirs have been built to support economic and social development. However, how the construction of reservoirs interacts with the surrounding ecosystem to affect temperature remains unclear. Spanning 2018 to 2022 in the Shiyang River Basin, we collected surface water and precipitation, as well as stem and soil samples. Using isotopic methods, we quantified how evaporation in the oasis reservoir-riparian forest system affects the local climate. Our findings show that the latent heat released by evapotranspiration from the reservoir and riparian forest system reduces the daily maximum temperature and daily temperature range by 7°C and 6°C respectively, compared to downstream areas with sparse vegetation around artificial lakes. Additionally, it enhances local moisture recycling, increasing precipitation. This study reveals regional cooling effect due to interactions between water bodies, the atmosphere, and vegetation. We propose that establishing reservoir-riparian forest systems can positively impact local climate regulation and serve as an effective strategy for adapting to global climate warming.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.