Lukas Schartel, Cosimo Jann, Anna Wierczeiko, Tamer Butto, Stefan Mündnich, Virginie Marchand, Yuri Motorin, Mark Helm, Susanne Gerber, Edward A. Lemke
{"title":"设计细胞器中的环状 gRNA 原位选择性 RNA 伪鸟苷酸化","authors":"Lukas Schartel, Cosimo Jann, Anna Wierczeiko, Tamer Butto, Stefan Mündnich, Virginie Marchand, Yuri Motorin, Mark Helm, Susanne Gerber, Edward A. Lemke","doi":"10.1038/s41467-024-53403-1","DOIUrl":null,"url":null,"abstract":"<p>RNA modifications play a pivotal role in the regulation of RNA chemistry within cells. Several technologies have been developed with the goal of using RNA modifications to regulate cellular biochemistry selectively, but achieving selective and precise modifications remains a challenge. Here, we show that by using designer organelles, we can modify mRNA with pseudouridine in a highly selective and guide-RNA-dependent manner. We use designer organelles inspired by concepts of phase separation, a central tenet in developing artificial membraneless organelles in living mammalian cells. In addition, we use circular guide RNAs to markedly enhance the effectiveness of targeted pseudouridinylation. Our studies introduce spatial engineering through optimized RNA editing organelles (OREO) as a complementary tool for targeted RNA modification, providing new avenues to enhance RNA modification specificity.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective RNA pseudouridinylation in situ by circular gRNAs in designer organelles\",\"authors\":\"Lukas Schartel, Cosimo Jann, Anna Wierczeiko, Tamer Butto, Stefan Mündnich, Virginie Marchand, Yuri Motorin, Mark Helm, Susanne Gerber, Edward A. Lemke\",\"doi\":\"10.1038/s41467-024-53403-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>RNA modifications play a pivotal role in the regulation of RNA chemistry within cells. Several technologies have been developed with the goal of using RNA modifications to regulate cellular biochemistry selectively, but achieving selective and precise modifications remains a challenge. Here, we show that by using designer organelles, we can modify mRNA with pseudouridine in a highly selective and guide-RNA-dependent manner. We use designer organelles inspired by concepts of phase separation, a central tenet in developing artificial membraneless organelles in living mammalian cells. In addition, we use circular guide RNAs to markedly enhance the effectiveness of targeted pseudouridinylation. Our studies introduce spatial engineering through optimized RNA editing organelles (OREO) as a complementary tool for targeted RNA modification, providing new avenues to enhance RNA modification specificity.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53403-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53403-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Selective RNA pseudouridinylation in situ by circular gRNAs in designer organelles
RNA modifications play a pivotal role in the regulation of RNA chemistry within cells. Several technologies have been developed with the goal of using RNA modifications to regulate cellular biochemistry selectively, but achieving selective and precise modifications remains a challenge. Here, we show that by using designer organelles, we can modify mRNA with pseudouridine in a highly selective and guide-RNA-dependent manner. We use designer organelles inspired by concepts of phase separation, a central tenet in developing artificial membraneless organelles in living mammalian cells. In addition, we use circular guide RNAs to markedly enhance the effectiveness of targeted pseudouridinylation. Our studies introduce spatial engineering through optimized RNA editing organelles (OREO) as a complementary tool for targeted RNA modification, providing new avenues to enhance RNA modification specificity.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.