Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du, Jian-Xin Zhang
{"title":"通过掺杂锰元素的硒化锌中的 d-p 轨道调制提高铝存储性能","authors":"Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du, Jian-Xin Zhang","doi":"10.1039/d4qi02173h","DOIUrl":null,"url":null,"abstract":"Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structure stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C3N4 etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the center of the d- and p-band and regulating electronic interaction, Mn-ion doping enhances the adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d-p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosted Aluminum Storage Performance by d-p Orbital Modulation in Zinc Selenide with Manganese Element Dopants\",\"authors\":\"Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du, Jian-Xin Zhang\",\"doi\":\"10.1039/d4qi02173h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structure stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C3N4 etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the center of the d- and p-band and regulating electronic interaction, Mn-ion doping enhances the adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d-p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi02173h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02173h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Boosted Aluminum Storage Performance by d-p Orbital Modulation in Zinc Selenide with Manganese Element Dopants
Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structure stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C3N4 etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the center of the d- and p-band and regulating electronic interaction, Mn-ion doping enhances the adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d-p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.