通过掺杂锰元素的硒化锌中的 d-p 轨道调制提高铝存储性能

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du and Jianxin Zhang
{"title":"通过掺杂锰元素的硒化锌中的 d-p 轨道调制提高铝存储性能","authors":"Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du and Jianxin Zhang","doi":"10.1039/D4QI02173H","DOIUrl":null,"url":null,"abstract":"<p >Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structural stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the d- and p-band centers and regulating electronic interactions, Mn-ion doping enhances adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d–p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 23","pages":" 8535-8546"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosted aluminum storage performance by d–p orbital modulation in zinc selenide with manganese element dopants†\",\"authors\":\"Han Wang, Rongkai Kang, Boya Zhang, Xingchang Zhang, Guowen Chen, Yiqun Du and Jianxin Zhang\",\"doi\":\"10.1039/D4QI02173H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structural stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C<small><sub>3</sub></small>N<small><sub>4</sub></small> etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the d- and p-band centers and regulating electronic interactions, Mn-ion doping enhances adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d–p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.</p>\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\" 23\",\"pages\":\" 8535-8546\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02173h\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qi/d4qi02173h","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属瑀(TMCs)具有较高的理论比容量和电压高原,因此被广泛用作可充电铝电池(RABs)的阴极材料。尽管前景广阔,但结构稳定性差、反应动力学慢、电子导电性不足等问题阻碍了其实际应用。在此,锰离子掺杂工程与 g-C3N4 蚀刻多孔碳框架(Mn-ZnSe@CNPC)相结合,协同增强了 ZnSe 的电化学特性。通过调节 d 和 p 波段的中心和电子相互作用,掺杂 Mn 离子增强了对溶剂基团的吸附,降低了电子转移能垒,从而使 Mn-ZnSe@CNPC 阴极具有较高的氧化还原活性和较快的反应动力学。此外,多孔碳纳米笼还可作为支撑框架,防止 ZnSe 纳米颗粒团聚,并提供充足的离子传输通道,从而解决了 RAB 中循环性差和电化学动力学缓慢的相关问题。得益于 d-p 轨道调制策略和结构优势,定制的 Mn-ZnSe@CNPC 阴极表现出更高的电化学性能和出色的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Boosted aluminum storage performance by d–p orbital modulation in zinc selenide with manganese element dopants†

Boosted aluminum storage performance by d–p orbital modulation in zinc selenide with manganese element dopants†

Transition metal chalcogenides (TMCs) are extensively employed as cathode materials for rechargeable aluminum batteries (RABs) due to their high theoretical specific capacity and voltage plateau. Although promising, practical applications are hindered by challenges such as inferior structural stability, slow reaction kinetics, and inadequate electronic conductivity. Herein, Mn-ion doping engineering and g-C3N4 etched porous carbon frameworks (Mn-ZnSe@CNPC) were integrated to synergistically enhance the electrochemical properties of ZnSe. Through modulating the d- and p-band centers and regulating electronic interactions, Mn-ion doping enhances adsorption for solvent groups and reduces electron transfer energy barriers, resulting in Mn-ZnSe@CNPC cathodes with high redox activity and fast reaction kinetics. In addition, the porous carbon nanocages act as support frameworks, preventing the agglomeration of ZnSe nanoparticles and providing ample ion transport channels, thus addressing issues related to poor cyclability and slow electrochemical kinetics in RABs. Benefiting from the d–p orbital modulation strategy and structural advantages, the tailored Mn-ZnSe@CNPC cathode exhibits boosted electrochemical performance and excellent stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信