双变量等几何有限元空间在有退化角几何图形情况下的索波列夫正则性

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED
Ulrich Reif
{"title":"双变量等几何有限元空间在有退化角几何图形情况下的索波列夫正则性","authors":"Ulrich Reif","doi":"10.1007/s10444-024-10203-x","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate Sobolev regularity of bivariate functions obtained in Isogeometric Analysis when using geometry maps that are degenerate in the sense that the first partial derivatives vanish at isolated points. In particular, we show how the known <span>\\(C^1\\)</span>-conditions for D-patches have to be tightened to guarantee square integrability of second partial derivatives, as required when computing finite element approximations of elliptic fourth order PDEs like the biharmonic equation.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10203-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner\",\"authors\":\"Ulrich Reif\",\"doi\":\"10.1007/s10444-024-10203-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate Sobolev regularity of bivariate functions obtained in Isogeometric Analysis when using geometry maps that are degenerate in the sense that the first partial derivatives vanish at isolated points. In particular, we show how the known <span>\\\\(C^1\\\\)</span>-conditions for D-patches have to be tightened to guarantee square integrability of second partial derivatives, as required when computing finite element approximations of elliptic fourth order PDEs like the biharmonic equation.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10444-024-10203-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10203-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10203-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了等几何分析中获得的双变量函数的 Sobolev 正则性,当使用几何映射时,这些几何映射是退化的,即第一偏导数在孤立点上消失。特别是,我们展示了已知的 D-patches 的 \(C^1\)-conditions 是如何被收紧以保证第二偏导数的平方可整性的,这在计算椭圆四阶 PDEs(如双谐方程)的有限元近似时是需要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sobolev regularity of bivariate isogeometric finite element spaces in case of a geometry map with degenerate corner

We investigate Sobolev regularity of bivariate functions obtained in Isogeometric Analysis when using geometry maps that are degenerate in the sense that the first partial derivatives vanish at isolated points. In particular, we show how the known \(C^1\)-conditions for D-patches have to be tightened to guarantee square integrability of second partial derivatives, as required when computing finite element approximations of elliptic fourth order PDEs like the biharmonic equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信