{"title":"围产期间充质干细胞中的 IGF1R 信号决定骨髓中的最终造血。","authors":"Qi Lou,Kaizheng Jiang,Xiaoqi Wang,Yuan Pan,Guo Qiu,Binghuo Wu,Lisha Yuan,Siyu Xie,Jian Chen,Quanhui Xu,Meng Zhao,Linjia Jiang","doi":"10.1182/blood.2024024258","DOIUrl":null,"url":null,"abstract":"During the transition from embryonic to adult life, the sites of hematopoiesis undergo dynamic shifts across various tissues. In adults, while bone marrow becomes the primary site for definitive hematopoiesis, the establishment of the bone marrow niche for accommodating hematopoietic stem cells (HSCs) remains incompletely understood. Here, we reveal that perinatal bone marrow mesenchymal stem cells (BMSCs) exhibit highly activated insulin-like growth factor 1 receptor (IGF1R) signaling compared to adult BMSCs. Deletion of Igf1r in perinatal BMSCs hinders the transition of HSCs from the fetal liver to the bone marrow in perinatal mice and disrupts hematopoiesis in adult individuals. Conversely, the deletion of Igf1r in adult BMSCs, adipocytes, osteoblasts, or endothelial cells does not affect HSCs in the bone marrow. Mechanistically, IGF1R signaling activates the transcription factor nuclear factor of activated T cells c1 (NFATc1) in perinatal BMSCs, which upregulates CXCL12 and other niche factors for HSC retention. Overall, IGF1R signaling in perinatal BMSCs regulates the development of the bone marrow niche for hematopoiesis.","PeriodicalId":9102,"journal":{"name":"Blood","volume":"67 1","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IGF1R signaling in perinatal mesenchymal stem cells determines definitive hematopoiesis in bone marrow.\",\"authors\":\"Qi Lou,Kaizheng Jiang,Xiaoqi Wang,Yuan Pan,Guo Qiu,Binghuo Wu,Lisha Yuan,Siyu Xie,Jian Chen,Quanhui Xu,Meng Zhao,Linjia Jiang\",\"doi\":\"10.1182/blood.2024024258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the transition from embryonic to adult life, the sites of hematopoiesis undergo dynamic shifts across various tissues. In adults, while bone marrow becomes the primary site for definitive hematopoiesis, the establishment of the bone marrow niche for accommodating hematopoietic stem cells (HSCs) remains incompletely understood. Here, we reveal that perinatal bone marrow mesenchymal stem cells (BMSCs) exhibit highly activated insulin-like growth factor 1 receptor (IGF1R) signaling compared to adult BMSCs. Deletion of Igf1r in perinatal BMSCs hinders the transition of HSCs from the fetal liver to the bone marrow in perinatal mice and disrupts hematopoiesis in adult individuals. Conversely, the deletion of Igf1r in adult BMSCs, adipocytes, osteoblasts, or endothelial cells does not affect HSCs in the bone marrow. Mechanistically, IGF1R signaling activates the transcription factor nuclear factor of activated T cells c1 (NFATc1) in perinatal BMSCs, which upregulates CXCL12 and other niche factors for HSC retention. Overall, IGF1R signaling in perinatal BMSCs regulates the development of the bone marrow niche for hematopoiesis.\",\"PeriodicalId\":9102,\"journal\":{\"name\":\"Blood\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":21.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blood\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1182/blood.2024024258\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024024258","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
IGF1R signaling in perinatal mesenchymal stem cells determines definitive hematopoiesis in bone marrow.
During the transition from embryonic to adult life, the sites of hematopoiesis undergo dynamic shifts across various tissues. In adults, while bone marrow becomes the primary site for definitive hematopoiesis, the establishment of the bone marrow niche for accommodating hematopoietic stem cells (HSCs) remains incompletely understood. Here, we reveal that perinatal bone marrow mesenchymal stem cells (BMSCs) exhibit highly activated insulin-like growth factor 1 receptor (IGF1R) signaling compared to adult BMSCs. Deletion of Igf1r in perinatal BMSCs hinders the transition of HSCs from the fetal liver to the bone marrow in perinatal mice and disrupts hematopoiesis in adult individuals. Conversely, the deletion of Igf1r in adult BMSCs, adipocytes, osteoblasts, or endothelial cells does not affect HSCs in the bone marrow. Mechanistically, IGF1R signaling activates the transcription factor nuclear factor of activated T cells c1 (NFATc1) in perinatal BMSCs, which upregulates CXCL12 and other niche factors for HSC retention. Overall, IGF1R signaling in perinatal BMSCs regulates the development of the bone marrow niche for hematopoiesis.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.