{"title":"缺陷触发可逆相变,提升配位聚合物的电化学性能","authors":"Yixiu Xu, Chenyu Yang, Yi Man, Xinwen Dou, Xin Xiao, Qiang Xu, Qiang Ju, Qinghua Liu, Zhenlan Fang","doi":"10.1021/acs.chemmater.4c01957","DOIUrl":null,"url":null,"abstract":"Coordination polymers (CPs) hold promise for reliable and powerful supercapacitors (SCs) to overcome the energy crisis. However, CP-SCs face the daunting challenge of maintaining high pseudocapacitance after long-term charge/discharge cycling. Generally, if introducing defects exerted a positive effect on the property, eliminating defects would show a negative effect, and vice versa. Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. The aqueous (A-ASC) and solid-state asymmetric supercapacitor (SS-ASC) devices based on DECPs deliver high energy densities of 80.3 and 61.5 Wh kg<sup>–1</sup>, superb power densities of 8471.0 and 8430.6 W kg<sup>–1</sup>, and long cycling lifespan of up to 2000 cycles with 92.0 and 80.0% capacity retention, respectively. Moreover, the SS-ASC exhibits excellent flexibility, verified by 99.0% maintenance of its initial capacitance when it is twisted and bent at 180°. Importantly, this work has certified that stepwise increasing/decreasing the concentration of ordered defects gradually triggered reversible phase transformation of CP from nonporous to microporous by charge–discharge cycling, in situ addition of the modulator, and postsynthetic treatment. The mechanism of forming/eliminating defects and their effects on supercapacitive performances of CP-SCs have been unprecedentedly clarified. These findings offer insight into the relationship between defective structure and electrochemical behavior for developing efficient long-cycling CP-SCs.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers\",\"authors\":\"Yixiu Xu, Chenyu Yang, Yi Man, Xinwen Dou, Xin Xiao, Qiang Xu, Qiang Ju, Qinghua Liu, Zhenlan Fang\",\"doi\":\"10.1021/acs.chemmater.4c01957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coordination polymers (CPs) hold promise for reliable and powerful supercapacitors (SCs) to overcome the energy crisis. However, CP-SCs face the daunting challenge of maintaining high pseudocapacitance after long-term charge/discharge cycling. Generally, if introducing defects exerted a positive effect on the property, eliminating defects would show a negative effect, and vice versa. Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. The aqueous (A-ASC) and solid-state asymmetric supercapacitor (SS-ASC) devices based on DECPs deliver high energy densities of 80.3 and 61.5 Wh kg<sup>–1</sup>, superb power densities of 8471.0 and 8430.6 W kg<sup>–1</sup>, and long cycling lifespan of up to 2000 cycles with 92.0 and 80.0% capacity retention, respectively. Moreover, the SS-ASC exhibits excellent flexibility, verified by 99.0% maintenance of its initial capacitance when it is twisted and bent at 180°. Importantly, this work has certified that stepwise increasing/decreasing the concentration of ordered defects gradually triggered reversible phase transformation of CP from nonporous to microporous by charge–discharge cycling, in situ addition of the modulator, and postsynthetic treatment. The mechanism of forming/eliminating defects and their effects on supercapacitive performances of CP-SCs have been unprecedentedly clarified. These findings offer insight into the relationship between defective structure and electrochemical behavior for developing efficient long-cycling CP-SCs.\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemmater.4c01957\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c01957","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers
Coordination polymers (CPs) hold promise for reliable and powerful supercapacitors (SCs) to overcome the energy crisis. However, CP-SCs face the daunting challenge of maintaining high pseudocapacitance after long-term charge/discharge cycling. Generally, if introducing defects exerted a positive effect on the property, eliminating defects would show a negative effect, and vice versa. Contrary to this common sense, here we demonstrate that both implanting defects and eliminating defects can significantly boost the specific capacitance of the defect-engineered CPs (DECPs), which are about 1.23 and 1.62 times that of the pristine CP, respectively, without loss of rate capability even after 10,000 charge–discharge cycles. The aqueous (A-ASC) and solid-state asymmetric supercapacitor (SS-ASC) devices based on DECPs deliver high energy densities of 80.3 and 61.5 Wh kg–1, superb power densities of 8471.0 and 8430.6 W kg–1, and long cycling lifespan of up to 2000 cycles with 92.0 and 80.0% capacity retention, respectively. Moreover, the SS-ASC exhibits excellent flexibility, verified by 99.0% maintenance of its initial capacitance when it is twisted and bent at 180°. Importantly, this work has certified that stepwise increasing/decreasing the concentration of ordered defects gradually triggered reversible phase transformation of CP from nonporous to microporous by charge–discharge cycling, in situ addition of the modulator, and postsynthetic treatment. The mechanism of forming/eliminating defects and their effects on supercapacitive performances of CP-SCs have been unprecedentedly clarified. These findings offer insight into the relationship between defective structure and electrochemical behavior for developing efficient long-cycling CP-SCs.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.