皮层下喂养回路将感知间节点与下颌运动联系起来

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Christin Kosse, Jessica Ivanov, Zachary Knight, Kyle Pellegrino, Jeffrey Friedman
{"title":"皮层下喂养回路将感知间节点与下颌运动联系起来","authors":"Christin Kosse, Jessica Ivanov, Zachary Knight, Kyle Pellegrino, Jeffrey Friedman","doi":"10.1038/s41586-024-08098-1","DOIUrl":null,"url":null,"abstract":"<p>The brain processes an array of stimuli, enabling the selection of appropriate behavioural responses, but the neural pathways linking interoceptive inputs to outputs for feeding are poorly understood<sup>1,2,3</sup>. Here we delineate a subcortical circuit in which brain-derived neurotrophic factor (BDNF)-expressing neurons in the ventromedial hypothalamus (VMH) directly connect interoceptive inputs to motor centres, controlling food consumption and jaw movements. VMH<sup>BDNF</sup> neuron inhibition increases food intake by gating motor sequences of feeding through projections to premotor areas of the jaw. When food is unavailable, VMH<sup>BDNF</sup> inhibition elicits consummatory behaviours directed at inanimate objects such as wooden blocks, and inhibition of perimesencephalic trigeminal area (pMe5) projections evokes rhythmic jaw movements. The activity of these neurons is decreased during food consumption and increases when food is in proximity but not consumed. Activity is also increased in obese animals and after leptin treatment. VMH<sup>BDNF</sup> neurons receive monosynaptic inputs from both agouti-related peptide (AgRP) and proopiomelanocortin neurons in the arcuate nucleus (Arc), and constitutive VMH<sup>BDNF</sup> activation blocks the orexigenic effect of AgRP activation. These data indicate an Arc → VMH<sup>BDNF</sup> → pMe5 circuit that senses the energy state of an animal and regulates consummatory behaviours in a state-dependent manner.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A subcortical feeding circuit linking an interoceptive node to jaw movement\",\"authors\":\"Christin Kosse, Jessica Ivanov, Zachary Knight, Kyle Pellegrino, Jeffrey Friedman\",\"doi\":\"10.1038/s41586-024-08098-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The brain processes an array of stimuli, enabling the selection of appropriate behavioural responses, but the neural pathways linking interoceptive inputs to outputs for feeding are poorly understood<sup>1,2,3</sup>. Here we delineate a subcortical circuit in which brain-derived neurotrophic factor (BDNF)-expressing neurons in the ventromedial hypothalamus (VMH) directly connect interoceptive inputs to motor centres, controlling food consumption and jaw movements. VMH<sup>BDNF</sup> neuron inhibition increases food intake by gating motor sequences of feeding through projections to premotor areas of the jaw. When food is unavailable, VMH<sup>BDNF</sup> inhibition elicits consummatory behaviours directed at inanimate objects such as wooden blocks, and inhibition of perimesencephalic trigeminal area (pMe5) projections evokes rhythmic jaw movements. The activity of these neurons is decreased during food consumption and increases when food is in proximity but not consumed. Activity is also increased in obese animals and after leptin treatment. VMH<sup>BDNF</sup> neurons receive monosynaptic inputs from both agouti-related peptide (AgRP) and proopiomelanocortin neurons in the arcuate nucleus (Arc), and constitutive VMH<sup>BDNF</sup> activation blocks the orexigenic effect of AgRP activation. These data indicate an Arc → VMH<sup>BDNF</sup> → pMe5 circuit that senses the energy state of an animal and regulates consummatory behaviours in a state-dependent manner.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-024-08098-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08098-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大脑可处理一系列刺激,从而选择适当的行为反应,但人们对将感知间输入连接到进食输出的神经通路知之甚少1,2,3。在这里,我们描述了一个皮层下回路,其中腹内侧下丘脑(VMH)中表达脑源性神经营养因子(BDNF)的神经元直接将感觉间输入连接到运动中枢,从而控制食物消耗和下颌运动。VMHBDNF 神经元抑制通过向下颌前运动区的投射控制进食的运动序列,从而增加食物摄入量。当没有食物时,抑制 VMHBDNF 神经元会引起针对木块等无生命物体的消耗行为,而抑制脑周三叉神经区(pMe5)的投射则会引起有节奏的下颌运动。在进食过程中,这些神经元的活动会减弱,而当食物就在附近但未被进食时,这些神经元的活动会增强。肥胖动物和瘦素治疗后,这些神经元的活动也会增加。VMHBDNF 神经元接受来自弓状核(Arc)中激动相关肽(AgRP)和原绒毛膜促皮质素神经元的单突触输入,构成性 VMHBDNF 激活可阻断 AgRP 激活的促食欲效应。这些数据表明,Arc → VMHBDNF → pMe5回路能够感知动物的能量状态,并以状态依赖的方式调节消耗行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A subcortical feeding circuit linking an interoceptive node to jaw movement

A subcortical feeding circuit linking an interoceptive node to jaw movement

The brain processes an array of stimuli, enabling the selection of appropriate behavioural responses, but the neural pathways linking interoceptive inputs to outputs for feeding are poorly understood1,2,3. Here we delineate a subcortical circuit in which brain-derived neurotrophic factor (BDNF)-expressing neurons in the ventromedial hypothalamus (VMH) directly connect interoceptive inputs to motor centres, controlling food consumption and jaw movements. VMHBDNF neuron inhibition increases food intake by gating motor sequences of feeding through projections to premotor areas of the jaw. When food is unavailable, VMHBDNF inhibition elicits consummatory behaviours directed at inanimate objects such as wooden blocks, and inhibition of perimesencephalic trigeminal area (pMe5) projections evokes rhythmic jaw movements. The activity of these neurons is decreased during food consumption and increases when food is in proximity but not consumed. Activity is also increased in obese animals and after leptin treatment. VMHBDNF neurons receive monosynaptic inputs from both agouti-related peptide (AgRP) and proopiomelanocortin neurons in the arcuate nucleus (Arc), and constitutive VMHBDNF activation blocks the orexigenic effect of AgRP activation. These data indicate an Arc → VMHBDNF → pMe5 circuit that senses the energy state of an animal and regulates consummatory behaviours in a state-dependent manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信