Maycon Lucas de Oliveira, Juliana Cancino-Bernardi, Márcia Andreia Mesquita Silva da Veiga
{"title":"了解和预测氧化铁纳米粒子在环境中的扩散:关于合成、表征和建模的综合研究","authors":"Maycon Lucas de Oliveira, Juliana Cancino-Bernardi, Márcia Andreia Mesquita Silva da Veiga","doi":"10.1039/d3en00860f","DOIUrl":null,"url":null,"abstract":"Iron Oxide Nanoparticles (IONPs) are among the most versatile and applied nanoparticles due to their unique properties. However, the distribution of these nanoparticles (NPs) in the environmental system represents an emergency problem for understanding the generation of reactive oxygen species (ROS) and their unpredictable effect on micro and macro fauna/flora due to their chemical form. This study describes strategies to evaluate the dispersion of IONPs in environmental media under controlled conditions of pH (5 – 9), hardness (0 – 400 mg CaCO3 L-1), temperature (10 – 30 °C), and exposure time (0 – 48 h) in aquatic systems. For this purpose, iron-based nanoparticles (hematite, goethite, and magnetite) were synthesised and characterised using chemical and morphological analytical techniques. Subsequently, the effect of environmental parameters on NPs dispersion was investigated by developing a model using a central composite rotatable design (CCRD) with total Fe as the dependent variable. The IONPs were synthesised with a size minor than 100 nm for the three nanoparticles. It was observed that the nano-hematites and magnetites had spherical morphology while goethite appeared as nanorods. The resulting models, integrating linear, quadratic, and combined effects, exhibit high predictive capacities – 76.4%, 93.6%, and an impressive 99.9% for nano-hematite, goethite, and magnetite, respectively. This research contributes to understanding nanoparticle behaviour in natural settings, providing essential insights to assess and potentially mitigate the adverse consequences of IONPs contamination in aquatic environments.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"14 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding and Predicting the Environmental Dispersion of Iron Oxide Nanoparticles: A Comprehensive Study on Synthesis, Characterisation, and Modelling\",\"authors\":\"Maycon Lucas de Oliveira, Juliana Cancino-Bernardi, Márcia Andreia Mesquita Silva da Veiga\",\"doi\":\"10.1039/d3en00860f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron Oxide Nanoparticles (IONPs) are among the most versatile and applied nanoparticles due to their unique properties. However, the distribution of these nanoparticles (NPs) in the environmental system represents an emergency problem for understanding the generation of reactive oxygen species (ROS) and their unpredictable effect on micro and macro fauna/flora due to their chemical form. This study describes strategies to evaluate the dispersion of IONPs in environmental media under controlled conditions of pH (5 – 9), hardness (0 – 400 mg CaCO3 L-1), temperature (10 – 30 °C), and exposure time (0 – 48 h) in aquatic systems. For this purpose, iron-based nanoparticles (hematite, goethite, and magnetite) were synthesised and characterised using chemical and morphological analytical techniques. Subsequently, the effect of environmental parameters on NPs dispersion was investigated by developing a model using a central composite rotatable design (CCRD) with total Fe as the dependent variable. The IONPs were synthesised with a size minor than 100 nm for the three nanoparticles. It was observed that the nano-hematites and magnetites had spherical morphology while goethite appeared as nanorods. The resulting models, integrating linear, quadratic, and combined effects, exhibit high predictive capacities – 76.4%, 93.6%, and an impressive 99.9% for nano-hematite, goethite, and magnetite, respectively. This research contributes to understanding nanoparticle behaviour in natural settings, providing essential insights to assess and potentially mitigate the adverse consequences of IONPs contamination in aquatic environments.\",\"PeriodicalId\":73,\"journal\":{\"name\":\"Environmental Science: Nano\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Nano\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://doi.org/10.1039/d3en00860f\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d3en00860f","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Understanding and Predicting the Environmental Dispersion of Iron Oxide Nanoparticles: A Comprehensive Study on Synthesis, Characterisation, and Modelling
Iron Oxide Nanoparticles (IONPs) are among the most versatile and applied nanoparticles due to their unique properties. However, the distribution of these nanoparticles (NPs) in the environmental system represents an emergency problem for understanding the generation of reactive oxygen species (ROS) and their unpredictable effect on micro and macro fauna/flora due to their chemical form. This study describes strategies to evaluate the dispersion of IONPs in environmental media under controlled conditions of pH (5 – 9), hardness (0 – 400 mg CaCO3 L-1), temperature (10 – 30 °C), and exposure time (0 – 48 h) in aquatic systems. For this purpose, iron-based nanoparticles (hematite, goethite, and magnetite) were synthesised and characterised using chemical and morphological analytical techniques. Subsequently, the effect of environmental parameters on NPs dispersion was investigated by developing a model using a central composite rotatable design (CCRD) with total Fe as the dependent variable. The IONPs were synthesised with a size minor than 100 nm for the three nanoparticles. It was observed that the nano-hematites and magnetites had spherical morphology while goethite appeared as nanorods. The resulting models, integrating linear, quadratic, and combined effects, exhibit high predictive capacities – 76.4%, 93.6%, and an impressive 99.9% for nano-hematite, goethite, and magnetite, respectively. This research contributes to understanding nanoparticle behaviour in natural settings, providing essential insights to assess and potentially mitigate the adverse consequences of IONPs contamination in aquatic environments.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis