Bohui Wei , Yaodong Liang , Yuangang Li , Xudong Yang , Chenzhong Yao
{"title":"在塌陷十二面形 Co/NC 电催化剂上提高氮气产氨率","authors":"Bohui Wei , Yaodong Liang , Yuangang Li , Xudong Yang , Chenzhong Yao","doi":"10.1016/j.electacta.2024.145278","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, multi-component non-precious metal catalysts have been considered as a significant strategy for enhancing the yield of synthesizing NH<sub>3</sub> by electrocatalytic nitrogen reduction reaction (E-NRR). In the present work, carbon composites doped with well-dispersed Co and N (Co/NC) were prepared by pyrolyzing zeolitic imidazolate framework-67 (ZIF-67) at various temperatures protected under a N<sub>2</sub> flow. Co/NC exhibits a collapsed dodecahedral morphology with a mesoporous structure (3.5–4 nm). The chemical states of Co/N and the structural defects of C are closely related to the carbonization temperature. In a N<sub>2</sub>-saturated 0.1 M KOH electrolyte, the as-prepared catalysts exhibit an NH<sub>3</sub> yield rate (<em>Y</em>(NH<sub>3</sub>)) of 60.57 μg h<sup>-1</sup> mg<sub>cat.</sub><sup>-1</sup> and a Faradaic efficiency (FE) of 23.3 % at -0.1 V (<em>vs</em> the reversible hydrogen electrode, RHE) at ambient conditions. The enhanced E-NRR activity of Co/NC may primarily originate from an associative distal pathway on the Co-N<sub>3<img></sub>C sites and the carbon defects in an alkaline electrolyte. Specifically, this work presents a three-component E-NRR catalyst with excellent stability and great activity based on Co/NC.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"508 ","pages":"Article 145278"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced ammonia yield rate from nitrogen on collapsed dodecahedral-shaped Co/NC electrocatalyst\",\"authors\":\"Bohui Wei , Yaodong Liang , Yuangang Li , Xudong Yang , Chenzhong Yao\",\"doi\":\"10.1016/j.electacta.2024.145278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nowadays, multi-component non-precious metal catalysts have been considered as a significant strategy for enhancing the yield of synthesizing NH<sub>3</sub> by electrocatalytic nitrogen reduction reaction (E-NRR). In the present work, carbon composites doped with well-dispersed Co and N (Co/NC) were prepared by pyrolyzing zeolitic imidazolate framework-67 (ZIF-67) at various temperatures protected under a N<sub>2</sub> flow. Co/NC exhibits a collapsed dodecahedral morphology with a mesoporous structure (3.5–4 nm). The chemical states of Co/N and the structural defects of C are closely related to the carbonization temperature. In a N<sub>2</sub>-saturated 0.1 M KOH electrolyte, the as-prepared catalysts exhibit an NH<sub>3</sub> yield rate (<em>Y</em>(NH<sub>3</sub>)) of 60.57 μg h<sup>-1</sup> mg<sub>cat.</sub><sup>-1</sup> and a Faradaic efficiency (FE) of 23.3 % at -0.1 V (<em>vs</em> the reversible hydrogen electrode, RHE) at ambient conditions. The enhanced E-NRR activity of Co/NC may primarily originate from an associative distal pathway on the Co-N<sub>3<img></sub>C sites and the carbon defects in an alkaline electrolyte. Specifically, this work presents a three-component E-NRR catalyst with excellent stability and great activity based on Co/NC.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"508 \",\"pages\":\"Article 145278\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468624015147\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468624015147","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
如今,多组分非贵金属催化剂已被视为通过电催化氮还原反应(ERR)提高合成 NH3 产率的重要策略。在本研究中,通过在不同温度下热解沸石咪唑盐酸盐框架-67(ZIF-67),并在氮气流保护下制备了掺杂了良好分散的 Co 和 N 的碳复合材料(Co/NC)。Co/NC 呈十二面体塌缩形态,具有介孔结构(3.5-4 nm)。Co/N 的化学状态和 C 的结构缺陷与碳化温度密切相关。在 N2 饱和的 0.1 M KOH 电解液中,所制备的催化剂在环境条件下的 NH3 产率(Y(NH3))为 60.57 μg h-1 mgcat.-1,在 -0.1 V 下的法拉第效率(FE)为 23.3%(相对于可逆氢电极,RHE)。Co/NC 增强的ERR 活性可能主要源于 Co-N3-C 位点和碱性电解质中碳缺陷的关联远端途径。具体而言,本研究提出了一种基于 Co/NC 的三组份 E-NRR 催化剂,该催化剂具有优异的稳定性和极高的活性。
Enhanced ammonia yield rate from nitrogen on collapsed dodecahedral-shaped Co/NC electrocatalyst
Nowadays, multi-component non-precious metal catalysts have been considered as a significant strategy for enhancing the yield of synthesizing NH3 by electrocatalytic nitrogen reduction reaction (E-NRR). In the present work, carbon composites doped with well-dispersed Co and N (Co/NC) were prepared by pyrolyzing zeolitic imidazolate framework-67 (ZIF-67) at various temperatures protected under a N2 flow. Co/NC exhibits a collapsed dodecahedral morphology with a mesoporous structure (3.5–4 nm). The chemical states of Co/N and the structural defects of C are closely related to the carbonization temperature. In a N2-saturated 0.1 M KOH electrolyte, the as-prepared catalysts exhibit an NH3 yield rate (Y(NH3)) of 60.57 μg h-1 mgcat.-1 and a Faradaic efficiency (FE) of 23.3 % at -0.1 V (vs the reversible hydrogen electrode, RHE) at ambient conditions. The enhanced E-NRR activity of Co/NC may primarily originate from an associative distal pathway on the Co-N3C sites and the carbon defects in an alkaline electrolyte. Specifically, this work presents a three-component E-NRR catalyst with excellent stability and great activity based on Co/NC.
期刊介绍:
Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.