基于核形态学的衰老检测机器学习算法

IF 81.3 1区 生物学 Q1 CELL BIOLOGY
Imanol Duran
{"title":"基于核形态学的衰老检测机器学习算法","authors":"Imanol Duran","doi":"10.1038/s41580-024-00796-y","DOIUrl":null,"url":null,"abstract":"In this Tools of the Trade article, Duran (Gil lab) describes the development of novel machine learning algorithms that enable the detection of senescent cells in vitro and in diverse tissues based solely on nuclear morphologeny analysis.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"25 12","pages":"949-949"},"PeriodicalIF":81.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nuclear morphology-based machine learning algorithm for senescence detection\",\"authors\":\"Imanol Duran\",\"doi\":\"10.1038/s41580-024-00796-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this Tools of the Trade article, Duran (Gil lab) describes the development of novel machine learning algorithms that enable the detection of senescent cells in vitro and in diverse tissues based solely on nuclear morphologeny analysis.\",\"PeriodicalId\":19051,\"journal\":{\"name\":\"Nature Reviews Molecular Cell Biology\",\"volume\":\"25 12\",\"pages\":\"949-949\"},\"PeriodicalIF\":81.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41580-024-00796-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41580-024-00796-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇《贸易工具》(Tools of the Trade)文章中,Duran(Gil 实验室)介绍了新型机器学习算法的开发情况,该算法能够仅根据核形态学分析检测体外和不同组织中的衰老细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A nuclear morphology-based machine learning algorithm for senescence detection

A nuclear morphology-based machine learning algorithm for senescence detection
In this Tools of the Trade article, Duran (Gil lab) describes the development of novel machine learning algorithms that enable the detection of senescent cells in vitro and in diverse tissues based solely on nuclear morphologeny analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Molecular Cell Biology
Nature Reviews Molecular Cell Biology 生物-细胞生物学
CiteScore
173.60
自引率
0.50%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信