沉积到微型 SQUID 怀疑测量器中的不对称 [Dy2] 分子:对其磁性完整性的原位表征

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-10-23 DOI:10.1039/D4NR03484H
Ana Repollés, María Carmen Pallarés, David Aguilà, Olivier Roubeau, Verónica Velasco, Diego Gella, Leoní A. Barrios, María José Martínez-Pérez, Javier Sesé, Dietmar Drung, Jesús Ignacio Martínez, Thomas Schurig, Boris Le Guennic, Anabel Lostao, Guillem Aromí and Fernando Luis
{"title":"沉积到微型 SQUID 怀疑测量器中的不对称 [Dy2] 分子:对其磁性完整性的原位表征","authors":"Ana Repollés, María Carmen Pallarés, David Aguilà, Olivier Roubeau, Verónica Velasco, Diego Gella, Leoní A. Barrios, María José Martínez-Pérez, Javier Sesé, Dietmar Drung, Jesús Ignacio Martínez, Thomas Schurig, Boris Le Guennic, Anabel Lostao, Guillem Aromí and Fernando Luis","doi":"10.1039/D4NR03484H","DOIUrl":null,"url":null,"abstract":"<p >The controlled integration of magnetic molecules into superconducting circuits is key to developing hybrid quantum devices. Herein, we study <strong>[Dy<small><sub>2</sub></small>]</strong> molecular dimers deposited into micro-SQUID susceptometers. The results of magnetic, heat capacity and magnetic resonance experiments, backed by theoretical calculations, show that each <strong>[Dy<small><sub>2</sub></small>]</strong> dimer fulfills the main requisites to encode a two-spin quantum processor. Arrays of between 2 × 10<small><sup>8</sup></small> and 7 × 10<small><sup>9</sup></small><strong>[Dy<small><sub>2</sub></small>]</strong> molecules were optimally integrated under ambient conditions inside the 20 μm wide loops of micro-SQUID sensors by means of dip-pen nanolithography. Equilibrium magnetic susceptibility and phonon-assisted spin tunneling dynamics measured <em>in situ</em> substantiate that these molecules preserve spin ground states, magnetic interactions and magnetic asymmetry that characterize them in bulk. These results show that it is possible to interface multi-qubit molecular complexes with on-chip superconducting circuits without disturbing their relevant properties and suggest the potential of soft nanolithography techniques to achieve this goal.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 1","pages":" 219-229"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr03484h?page=search","citationCount":"0","resultStr":"{\"title\":\"Asymmetric [Dy2] molecules deposited into micro-SQUID susceptometers: in situ characterization of their magnetic integrity†\",\"authors\":\"Ana Repollés, María Carmen Pallarés, David Aguilà, Olivier Roubeau, Verónica Velasco, Diego Gella, Leoní A. Barrios, María José Martínez-Pérez, Javier Sesé, Dietmar Drung, Jesús Ignacio Martínez, Thomas Schurig, Boris Le Guennic, Anabel Lostao, Guillem Aromí and Fernando Luis\",\"doi\":\"10.1039/D4NR03484H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The controlled integration of magnetic molecules into superconducting circuits is key to developing hybrid quantum devices. Herein, we study <strong>[Dy<small><sub>2</sub></small>]</strong> molecular dimers deposited into micro-SQUID susceptometers. The results of magnetic, heat capacity and magnetic resonance experiments, backed by theoretical calculations, show that each <strong>[Dy<small><sub>2</sub></small>]</strong> dimer fulfills the main requisites to encode a two-spin quantum processor. Arrays of between 2 × 10<small><sup>8</sup></small> and 7 × 10<small><sup>9</sup></small><strong>[Dy<small><sub>2</sub></small>]</strong> molecules were optimally integrated under ambient conditions inside the 20 μm wide loops of micro-SQUID sensors by means of dip-pen nanolithography. Equilibrium magnetic susceptibility and phonon-assisted spin tunneling dynamics measured <em>in situ</em> substantiate that these molecules preserve spin ground states, magnetic interactions and magnetic asymmetry that characterize them in bulk. These results show that it is possible to interface multi-qubit molecular complexes with on-chip superconducting circuits without disturbing their relevant properties and suggest the potential of soft nanolithography techniques to achieve this goal.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 1\",\"pages\":\" 219-229\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/nr/d4nr03484h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03484h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03484h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将磁性分子可控地集成到超导电路中是开发混合量子器件的关键。在这里,我们研究了沉积在微型 SQUID 磁感应强度计上的 [Dy2] 分子二聚体。在理论计算的支持下,磁性、热容量和磁共振实验的结果表明,每个 [Dy2] 二聚体都满足了编码双自旋量子处理器的主要要求。在环境条件下,通过 Dip-Pen 纳米光刻技术将 2×108 到 7×109 个 [Dy2] 分子阵列以最佳方式集成到 20 μm 宽的微型-SQUID 传感器环路中。原位测量的平衡磁感应强度和声子辅助自旋隧穿动力学证明,这些分子保留了自旋基态、磁相互作用和磁不对称性,而这些正是它们在体态中的特征。这些结果表明,可以将多量子比特分子复合物与片上超导电路连接起来,而不会干扰它们的相关特性,并暗示了软纳米光刻技术实现这一目标的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Asymmetric [Dy2] molecules deposited into micro-SQUID susceptometers: in situ characterization of their magnetic integrity†

Asymmetric [Dy2] molecules deposited into micro-SQUID susceptometers: in situ characterization of their magnetic integrity†

The controlled integration of magnetic molecules into superconducting circuits is key to developing hybrid quantum devices. Herein, we study [Dy2] molecular dimers deposited into micro-SQUID susceptometers. The results of magnetic, heat capacity and magnetic resonance experiments, backed by theoretical calculations, show that each [Dy2] dimer fulfills the main requisites to encode a two-spin quantum processor. Arrays of between 2 × 108 and 7 × 109[Dy2] molecules were optimally integrated under ambient conditions inside the 20 μm wide loops of micro-SQUID sensors by means of dip-pen nanolithography. Equilibrium magnetic susceptibility and phonon-assisted spin tunneling dynamics measured in situ substantiate that these molecules preserve spin ground states, magnetic interactions and magnetic asymmetry that characterize them in bulk. These results show that it is possible to interface multi-qubit molecular complexes with on-chip superconducting circuits without disturbing their relevant properties and suggest the potential of soft nanolithography techniques to achieve this goal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信