Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang, Galan Moody, John E. Bowers, Nathan Youngblood
{"title":"用于光子内存计算的具有超高耐用性的集成非互易磁光学器件","authors":"Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang, Galan Moody, John E. Bowers, Nathan Youngblood","doi":"10.1038/s41566-024-01549-1","DOIUrl":null,"url":null,"abstract":"<p>Processing information in the optical domain promises advantages in both speed and energy efficiency over existing digital hardware for a variety of emerging applications in artificial intelligence and machine learning. A typical approach to photonic processing is to multiply a rapidly changing optical input vector with a matrix of fixed optical weights. However, encoding these weights on-chip using an array of photonic memory cells is currently limited by a wide range of material- and device-level issues, such as the programming speed, extinction ratio and endurance, among others. Here we propose a new approach to encoding optical weights for in-memory photonic computing using magneto-optic memory cells comprising heterogeneously integrated cerium-substituted yttrium iron garnet (Ce:YIG) on silicon micro-ring resonators. We show that leveraging the non-reciprocal phase shift in such magneto-optic materials offers several key advantages over existing architectures, providing a fast (1 ns), efficient (143 fJ per bit) and robust (2.4 billion programming cycles) platform for on-chip optical processing.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"109 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing\",\"authors\":\"Paolo Pintus, Mario Dumont, Vivswan Shah, Toshiya Murai, Yuya Shoji, Duanni Huang, Galan Moody, John E. Bowers, Nathan Youngblood\",\"doi\":\"10.1038/s41566-024-01549-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Processing information in the optical domain promises advantages in both speed and energy efficiency over existing digital hardware for a variety of emerging applications in artificial intelligence and machine learning. A typical approach to photonic processing is to multiply a rapidly changing optical input vector with a matrix of fixed optical weights. However, encoding these weights on-chip using an array of photonic memory cells is currently limited by a wide range of material- and device-level issues, such as the programming speed, extinction ratio and endurance, among others. Here we propose a new approach to encoding optical weights for in-memory photonic computing using magneto-optic memory cells comprising heterogeneously integrated cerium-substituted yttrium iron garnet (Ce:YIG) on silicon micro-ring resonators. We show that leveraging the non-reciprocal phase shift in such magneto-optic materials offers several key advantages over existing architectures, providing a fast (1 ns), efficient (143 fJ per bit) and robust (2.4 billion programming cycles) platform for on-chip optical processing.</p>\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41566-024-01549-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01549-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrated non-reciprocal magneto-optics with ultra-high endurance for photonic in-memory computing
Processing information in the optical domain promises advantages in both speed and energy efficiency over existing digital hardware for a variety of emerging applications in artificial intelligence and machine learning. A typical approach to photonic processing is to multiply a rapidly changing optical input vector with a matrix of fixed optical weights. However, encoding these weights on-chip using an array of photonic memory cells is currently limited by a wide range of material- and device-level issues, such as the programming speed, extinction ratio and endurance, among others. Here we propose a new approach to encoding optical weights for in-memory photonic computing using magneto-optic memory cells comprising heterogeneously integrated cerium-substituted yttrium iron garnet (Ce:YIG) on silicon micro-ring resonators. We show that leveraging the non-reciprocal phase shift in such magneto-optic materials offers several key advantages over existing architectures, providing a fast (1 ns), efficient (143 fJ per bit) and robust (2.4 billion programming cycles) platform for on-chip optical processing.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.