Yurim Bae , Dohyun Kim , Saimeng Li , Yelim Choi , Sung Yun Son , Taiho Park , Long Ye
{"title":"本征可拉伸聚合物光伏技术的稳定性:基础、成就与展望","authors":"Yurim Bae , Dohyun Kim , Saimeng Li , Yelim Choi , Sung Yun Son , Taiho Park , Long Ye","doi":"10.1016/j.progpolymsci.2024.101899","DOIUrl":null,"url":null,"abstract":"<div><div>Stretchable organic photovoltaics have recently garnered significant attention as promising power sources for wearable electronic systems. Especially, research on intrinsically stretchable organic photovoltaics (IS-OPVs) has been accelerated, as the unique advantage of IS-OPVs is their inherent deformability, which does not depend on fabrication processes or pre-treatment methods. Remarkably, the photoactive area increases during stretching, indicating a potential increase in power output and underscoring IS-OPV's strengths as a power source in self-powered electronic systems. Despite rapid advancements in power conversion efficiency and stretchability, IS-OPVs still encounter challenges in market adoption. The most critical performance factor for IS-OPVs is stability, which ensures stable operation under mechanical stress. This review analyses the structural factors that degrade the stability of IS-OPVs. Given their multilayer structure, mechanical failure can result from various complex causes, thus complicating the investigation and comprehensive understanding of the factors that promote performance degradation. This review introduces and discusses recently developed engineering strategies aimed at improving the mechanical stability of IS-OPVs. Furthermore, this review summarizes various experimental methods to assess the performance of IS-OPVs and discusses the insights gained from these experiments in relation to fabricating mechanically stable IS-OPVs with enhanced performance.</div></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"159 ","pages":"Article 101899"},"PeriodicalIF":26.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives\",\"authors\":\"Yurim Bae , Dohyun Kim , Saimeng Li , Yelim Choi , Sung Yun Son , Taiho Park , Long Ye\",\"doi\":\"10.1016/j.progpolymsci.2024.101899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stretchable organic photovoltaics have recently garnered significant attention as promising power sources for wearable electronic systems. Especially, research on intrinsically stretchable organic photovoltaics (IS-OPVs) has been accelerated, as the unique advantage of IS-OPVs is their inherent deformability, which does not depend on fabrication processes or pre-treatment methods. Remarkably, the photoactive area increases during stretching, indicating a potential increase in power output and underscoring IS-OPV's strengths as a power source in self-powered electronic systems. Despite rapid advancements in power conversion efficiency and stretchability, IS-OPVs still encounter challenges in market adoption. The most critical performance factor for IS-OPVs is stability, which ensures stable operation under mechanical stress. This review analyses the structural factors that degrade the stability of IS-OPVs. Given their multilayer structure, mechanical failure can result from various complex causes, thus complicating the investigation and comprehensive understanding of the factors that promote performance degradation. This review introduces and discusses recently developed engineering strategies aimed at improving the mechanical stability of IS-OPVs. Furthermore, this review summarizes various experimental methods to assess the performance of IS-OPVs and discusses the insights gained from these experiments in relation to fabricating mechanically stable IS-OPVs with enhanced performance.</div></div>\",\"PeriodicalId\":413,\"journal\":{\"name\":\"Progress in Polymer Science\",\"volume\":\"159 \",\"pages\":\"Article 101899\"},\"PeriodicalIF\":26.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079670024001163\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670024001163","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives
Stretchable organic photovoltaics have recently garnered significant attention as promising power sources for wearable electronic systems. Especially, research on intrinsically stretchable organic photovoltaics (IS-OPVs) has been accelerated, as the unique advantage of IS-OPVs is their inherent deformability, which does not depend on fabrication processes or pre-treatment methods. Remarkably, the photoactive area increases during stretching, indicating a potential increase in power output and underscoring IS-OPV's strengths as a power source in self-powered electronic systems. Despite rapid advancements in power conversion efficiency and stretchability, IS-OPVs still encounter challenges in market adoption. The most critical performance factor for IS-OPVs is stability, which ensures stable operation under mechanical stress. This review analyses the structural factors that degrade the stability of IS-OPVs. Given their multilayer structure, mechanical failure can result from various complex causes, thus complicating the investigation and comprehensive understanding of the factors that promote performance degradation. This review introduces and discusses recently developed engineering strategies aimed at improving the mechanical stability of IS-OPVs. Furthermore, this review summarizes various experimental methods to assess the performance of IS-OPVs and discusses the insights gained from these experiments in relation to fabricating mechanically stable IS-OPVs with enhanced performance.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.