{"title":"高阶光滑超曲面线性切片的模量","authors":"Anand Patel, Eric Riedl, Dennis Tseng","doi":"10.2140/ant.2024.18.2133","DOIUrl":null,"url":null,"abstract":"<p>We study the variation of linear sections of hypersurfaces in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math>. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperplane sections of any smooth degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> hypersurface in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> varies maximally for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>≥</mo>\n<mi>n</mi>\n<mo>+</mo> <mn>3</mn></math>. In the process, we generalize the classical Grauert–Mülich theorem about lines in projective space, both to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-planes in projective space and to free rational curves on arbitrary varieties. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"225 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moduli of linear slices of high degree smooth hypersurfaces\",\"authors\":\"Anand Patel, Eric Riedl, Dennis Tseng\",\"doi\":\"10.2140/ant.2024.18.2133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the variation of linear sections of hypersurfaces in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math>. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperplane sections of any smooth degree <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi></math> hypersurface in <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> varies maximally for <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi>\\n<mo>≥</mo>\\n<mi>n</mi>\\n<mo>+</mo> <mn>3</mn></math>. In the process, we generalize the classical Grauert–Mülich theorem about lines in projective space, both to <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>k</mi></math>-planes in projective space and to free rational curves on arbitrary varieties. </p>\",\"PeriodicalId\":50828,\"journal\":{\"name\":\"Algebra & Number Theory\",\"volume\":\"225 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/ant.2024.18.2133\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.2133","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究ℙn 中超曲面线段的变化。我们完整地分类了所有线段在模量上没有最大变化的平面曲线(必须是奇异曲线)。在更高维度上,我们证明了ℙn 中任何光滑度数为 d 的超曲面的超平面截面族在 d≥n+ 3 时变化最大。在此过程中,我们将关于投影空间中直线的经典格拉尔特-米利希定理推广到投影空间中的 k 平面和任意品种上的自由有理曲线。
Moduli of linear slices of high degree smooth hypersurfaces
We study the variation of linear sections of hypersurfaces in . We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperplane sections of any smooth degree hypersurface in varies maximally for . In the process, we generalize the classical Grauert–Mülich theorem about lines in projective space, both to -planes in projective space and to free rational curves on arbitrary varieties.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.