具有增强线性和突触可塑性的柔性 TiO2-WO3-x 混合记忆晶体管,可用于神经形态计算中的精确权重调整

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianyong Pan, Hao Kan, Zhaorui Liu, Song Gao, Enxiu Wu, Yang Li, Chunwei Zhang
{"title":"具有增强线性和突触可塑性的柔性 TiO2-WO3-x 混合记忆晶体管,可用于神经形态计算中的精确权重调整","authors":"Jianyong Pan, Hao Kan, Zhaorui Liu, Song Gao, Enxiu Wu, Yang Li, Chunwei Zhang","doi":"10.1038/s41528-024-00356-6","DOIUrl":null,"url":null,"abstract":"Tungsten oxide (WO3)-based memristors show promising applications in neuromorphic computing. However, single-layer WO3 memristors suffer from issues such as weak memory performance and nonlinear conductance variations. In this work, a functional layer based on the hybrids of WO3−x and TiO2 is proposed for constructing flexible memristors featuring outstanding synaptic characteristics. Applying diverse electrical stimulations to the memristor enables a range of synaptic functions, elucidating its conduction mechanism through the conductive filament model. The incorporation of TiO2 not only enhances the memristor’s memory characteristics but makes its conductance more linear, symmetrical and uniform during the long-term changes. Furthermore, in view of the enhanced device performance by TiO2 doping, the potential of this device for simple behavioral simulation and processing of complex computing problems is explored. The “learning-forgetting-relearning” characteristics and device integrability are visually demonstrated. Applying the device to a convolutional neural network, the recognition accuracy of MNIST handwritten digits reaches 98.7%.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-12"},"PeriodicalIF":12.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00356-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing\",\"authors\":\"Jianyong Pan, Hao Kan, Zhaorui Liu, Song Gao, Enxiu Wu, Yang Li, Chunwei Zhang\",\"doi\":\"10.1038/s41528-024-00356-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tungsten oxide (WO3)-based memristors show promising applications in neuromorphic computing. However, single-layer WO3 memristors suffer from issues such as weak memory performance and nonlinear conductance variations. In this work, a functional layer based on the hybrids of WO3−x and TiO2 is proposed for constructing flexible memristors featuring outstanding synaptic characteristics. Applying diverse electrical stimulations to the memristor enables a range of synaptic functions, elucidating its conduction mechanism through the conductive filament model. The incorporation of TiO2 not only enhances the memristor’s memory characteristics but makes its conductance more linear, symmetrical and uniform during the long-term changes. Furthermore, in view of the enhanced device performance by TiO2 doping, the potential of this device for simple behavioral simulation and processing of complex computing problems is explored. The “learning-forgetting-relearning” characteristics and device integrability are visually demonstrated. Applying the device to a convolutional neural network, the recognition accuracy of MNIST handwritten digits reaches 98.7%.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00356-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00356-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00356-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于氧化钨(WO3)的忆阻器在神经形态计算中的应用前景广阔。然而,单层 WO3 记忆晶体管存在记忆性能弱和非线性电导变化等问题。本研究提出了一种基于 WO3-x 和 TiO2 混合体的功能层,用于构建具有出色突触特性的柔性忆阻器。对该忆阻器施加不同的电刺激可实现一系列突触功能,并通过导电丝模型阐明了其传导机制。二氧化钛的加入不仅增强了忆阻器的记忆特性,还使其在长期变化过程中的传导更加线性、对称和均匀。此外,鉴于掺杂 TiO2 增强了器件性能,该器件在简单行为模拟和复杂计算问题处理方面的潜力也得到了探索。该器件的 "学习-遗忘-再学习 "特性和可集成性得到了直观的展示。将该器件应用于卷积神经网络,MNIST 手写数字的识别准确率达到 98.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing

Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing

Flexible TiO2-WO3−x hybrid memristor with enhanced linearity and synaptic plasticity for precise weight tuning in neuromorphic computing
Tungsten oxide (WO3)-based memristors show promising applications in neuromorphic computing. However, single-layer WO3 memristors suffer from issues such as weak memory performance and nonlinear conductance variations. In this work, a functional layer based on the hybrids of WO3−x and TiO2 is proposed for constructing flexible memristors featuring outstanding synaptic characteristics. Applying diverse electrical stimulations to the memristor enables a range of synaptic functions, elucidating its conduction mechanism through the conductive filament model. The incorporation of TiO2 not only enhances the memristor’s memory characteristics but makes its conductance more linear, symmetrical and uniform during the long-term changes. Furthermore, in view of the enhanced device performance by TiO2 doping, the potential of this device for simple behavioral simulation and processing of complex computing problems is explored. The “learning-forgetting-relearning” characteristics and device integrability are visually demonstrated. Applying the device to a convolutional neural network, the recognition accuracy of MNIST handwritten digits reaches 98.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信