通过战略性宏观界面调制增强四层复合薄膜的储能特性

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yongjing Zhang, Ying Lin, Yanlong Ma, Qibin Yuan, Haibo Yang
{"title":"通过战略性宏观界面调制增强四层复合薄膜的储能特性","authors":"Yongjing Zhang, Ying Lin, Yanlong Ma, Qibin Yuan, Haibo Yang","doi":"10.1021/acsami.4c12142","DOIUrl":null,"url":null,"abstract":"Dielectric capacitors play a crucial role in the field of energy storage; however, the low discharged energy density (<i>U</i><sub>e</sub>) of existing commercial dielectrics limits their future applications. Currently, further improvement in the <i>U</i><sub>e</sub> of dielectrics is constrained by the challenge of simultaneously achieving high permittivity (ε<sub>r</sub>) and high breakdown electric field strength (<i>E</i><sub>b</sub>). To address this issue, we designed a series of four-layer poly(vinylidene fluoride) (PVDF)-based composite films comprising three functional layers: a sodium bismuth titanate (NBT) plus PVDF composite (NBT&amp;PVDF) layer to achieve high ε<sub>r</sub> values and a pure PVDF layer and a boron nitride (BN) plus PVDF composite (BN&amp;PVDF) layer to achieve high <i>E</i><sub>b</sub> values. This design synergistically enhanced the ε<sub>r</sub> and <i>E</i><sub>b</sub> values of the composite films by exploiting low-loss macrointerface polarization via adjustment of the functional layer stacking order, as supported by simulation analyses. Ultimately, the composite film with a topmost layer of pure PVDF, followed by an NBT&amp;PVDF layer, another pure PVDF layer, and a BN&amp;PVDF layer achieved an enhanced <i>U</i><sub>e</sub> value of 26.42 J·cm<sup>–3</sup> and excellent efficiency of 80.03% at an ultrahigh <i>E</i><sub>b</sub> value of 770 MV·m<sup>–1</sup>. This approach offers an innovative pathway for developing advanced energy storage composite dielectrics via macrointerface manipulation.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Energy Storage Properties of Four-Layer Composite Films via Strategic Macrointerface Modulation\",\"authors\":\"Yongjing Zhang, Ying Lin, Yanlong Ma, Qibin Yuan, Haibo Yang\",\"doi\":\"10.1021/acsami.4c12142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dielectric capacitors play a crucial role in the field of energy storage; however, the low discharged energy density (<i>U</i><sub>e</sub>) of existing commercial dielectrics limits their future applications. Currently, further improvement in the <i>U</i><sub>e</sub> of dielectrics is constrained by the challenge of simultaneously achieving high permittivity (ε<sub>r</sub>) and high breakdown electric field strength (<i>E</i><sub>b</sub>). To address this issue, we designed a series of four-layer poly(vinylidene fluoride) (PVDF)-based composite films comprising three functional layers: a sodium bismuth titanate (NBT) plus PVDF composite (NBT&amp;PVDF) layer to achieve high ε<sub>r</sub> values and a pure PVDF layer and a boron nitride (BN) plus PVDF composite (BN&amp;PVDF) layer to achieve high <i>E</i><sub>b</sub> values. This design synergistically enhanced the ε<sub>r</sub> and <i>E</i><sub>b</sub> values of the composite films by exploiting low-loss macrointerface polarization via adjustment of the functional layer stacking order, as supported by simulation analyses. Ultimately, the composite film with a topmost layer of pure PVDF, followed by an NBT&amp;PVDF layer, another pure PVDF layer, and a BN&amp;PVDF layer achieved an enhanced <i>U</i><sub>e</sub> value of 26.42 J·cm<sup>–3</sup> and excellent efficiency of 80.03% at an ultrahigh <i>E</i><sub>b</sub> value of 770 MV·m<sup>–1</sup>. This approach offers an innovative pathway for developing advanced energy storage composite dielectrics via macrointerface manipulation.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c12142\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c12142","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电介质电容器在储能领域发挥着至关重要的作用;然而,现有商用电介质的低放电能量密度(Ue)限制了其未来的应用。目前,要同时实现高介电常数 (εr) 和高击穿电场强度 (Eb) 的挑战限制了电介质 Ue 的进一步提高。为了解决这个问题,我们设计了一系列四层聚偏二氟乙烯(PVDF)基复合薄膜,其中包括三个功能层:钛酸铋钠(NBT)加 PVDF 复合材料(NBT&PVDF)层,以实现高εr 值;纯 PVDF 层和氮化硼(BN)加 PVDF 复合材料(BN&PVDF)层,以实现高 Eb 值。这种设计通过调整功能层的堆叠顺序,利用低损耗的宏界面极化,协同提高了复合薄膜的εr 和 Eb 值,模拟分析也证明了这一点。最终,最上层为纯 PVDF 层、其次为 NBT&PVDF 层、另一层纯 PVDF 层和 BN&PVDF 层的复合薄膜在 770 MV-m-1 的超高 Eb 值下实现了 26.42 J-cm-3 的增强 Ue 值和 80.03% 的卓越效率。这种方法为通过宏观界面操作开发先进的储能复合电介质提供了一条创新之路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Energy Storage Properties of Four-Layer Composite Films via Strategic Macrointerface Modulation

Enhanced Energy Storage Properties of Four-Layer Composite Films via Strategic Macrointerface Modulation
Dielectric capacitors play a crucial role in the field of energy storage; however, the low discharged energy density (Ue) of existing commercial dielectrics limits their future applications. Currently, further improvement in the Ue of dielectrics is constrained by the challenge of simultaneously achieving high permittivity (εr) and high breakdown electric field strength (Eb). To address this issue, we designed a series of four-layer poly(vinylidene fluoride) (PVDF)-based composite films comprising three functional layers: a sodium bismuth titanate (NBT) plus PVDF composite (NBT&PVDF) layer to achieve high εr values and a pure PVDF layer and a boron nitride (BN) plus PVDF composite (BN&PVDF) layer to achieve high Eb values. This design synergistically enhanced the εr and Eb values of the composite films by exploiting low-loss macrointerface polarization via adjustment of the functional layer stacking order, as supported by simulation analyses. Ultimately, the composite film with a topmost layer of pure PVDF, followed by an NBT&PVDF layer, another pure PVDF layer, and a BN&PVDF layer achieved an enhanced Ue value of 26.42 J·cm–3 and excellent efficiency of 80.03% at an ultrahigh Eb value of 770 MV·m–1. This approach offers an innovative pathway for developing advanced energy storage composite dielectrics via macrointerface manipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信