Min Song, Qian Zhang, Guanyu Luo, Hanyu Hu, Deli Wang
{"title":"用于电催化的 MOFs 单原子配位结构工程","authors":"Min Song, Qian Zhang, Guanyu Luo, Hanyu Hu, Deli Wang","doi":"10.1016/j.ccr.2024.216281","DOIUrl":null,"url":null,"abstract":"<div><div>Metal-organic frameworks (MOFs) have attracted increasing attention as potential precursors for the synthesis of single atom catalysts (SACs) due to the high specific surface area, adjustable pore size, and ligand structure. Although significant efforts have been made to synthesize MOFs-derived SACs for electrocatalysis, it is still lack of fundamental regulation principles which governing the intrinsic electrocatalytic performance. In this review, the recent advancements in various MOFs-derived SACs are systematically summarized. The correlation between the central metal atoms, coordination atoms, local environment, morphology, and their corresponding electrocatalytic performance, including activity, selectivity and stability, is comprehensively analyzed. Furthermore, advanced characterization techniques are summarized to elucidate the ligand configuration of MOFs-derived SACs. Finally, the major challenges and future research directions for MOFs-derived SACs are proposed. This review provides a comprehensive understanding and updated information on the design of MOFs-derived SACs with well-confined coordination structures.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"523 ","pages":"Article 216281"},"PeriodicalIF":20.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordination structure engineering of single atoms derived from MOFs for Electrocatalysis\",\"authors\":\"Min Song, Qian Zhang, Guanyu Luo, Hanyu Hu, Deli Wang\",\"doi\":\"10.1016/j.ccr.2024.216281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metal-organic frameworks (MOFs) have attracted increasing attention as potential precursors for the synthesis of single atom catalysts (SACs) due to the high specific surface area, adjustable pore size, and ligand structure. Although significant efforts have been made to synthesize MOFs-derived SACs for electrocatalysis, it is still lack of fundamental regulation principles which governing the intrinsic electrocatalytic performance. In this review, the recent advancements in various MOFs-derived SACs are systematically summarized. The correlation between the central metal atoms, coordination atoms, local environment, morphology, and their corresponding electrocatalytic performance, including activity, selectivity and stability, is comprehensively analyzed. Furthermore, advanced characterization techniques are summarized to elucidate the ligand configuration of MOFs-derived SACs. Finally, the major challenges and future research directions for MOFs-derived SACs are proposed. This review provides a comprehensive understanding and updated information on the design of MOFs-derived SACs with well-confined coordination structures.</div></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"523 \",\"pages\":\"Article 216281\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524006271\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524006271","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Coordination structure engineering of single atoms derived from MOFs for Electrocatalysis
Metal-organic frameworks (MOFs) have attracted increasing attention as potential precursors for the synthesis of single atom catalysts (SACs) due to the high specific surface area, adjustable pore size, and ligand structure. Although significant efforts have been made to synthesize MOFs-derived SACs for electrocatalysis, it is still lack of fundamental regulation principles which governing the intrinsic electrocatalytic performance. In this review, the recent advancements in various MOFs-derived SACs are systematically summarized. The correlation between the central metal atoms, coordination atoms, local environment, morphology, and their corresponding electrocatalytic performance, including activity, selectivity and stability, is comprehensively analyzed. Furthermore, advanced characterization techniques are summarized to elucidate the ligand configuration of MOFs-derived SACs. Finally, the major challenges and future research directions for MOFs-derived SACs are proposed. This review provides a comprehensive understanding and updated information on the design of MOFs-derived SACs with well-confined coordination structures.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.