生物过程中的噪声感知参数估计:使用非均匀数据采样的神经网络代用模型

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2024-10-22 DOI:10.1002/aic.18634
Lauren Weir, Nigel Mathias, Brandon Corbett, Prashant Mhaskar
{"title":"生物过程中的噪声感知参数估计:使用非均匀数据采样的神经网络代用模型","authors":"Lauren Weir, Nigel Mathias, Brandon Corbett, Prashant Mhaskar","doi":"10.1002/aic.18634","DOIUrl":null,"url":null,"abstract":"This article demonstrates a parameter estimation technique for bioprocesses that utilizes measurement noise in experimental data to determine credible intervals on parameter estimates, with this information of potential use in prediction, robust control, and optimization. To determine these estimates, the work implements Bayesian inference using nested sampling, presenting an approach to develop neural network- (NN) based surrogate models. To address challenges associated with nonuniform sampling of experimental measurements, an NN structure is proposed. The resultant surrogate model is utilized within a Nested Sampling Algorithm that samples possible parameter values from the parameter space and uses the NN to calculate model output for use in the likelihood function based on the joint probability distribution of the noise of output variables. This method is illustrated against simulated data, then with experimental data from a Sartorius fed-batch bioprocess. Results demonstrate the feasibility of the proposed technique to enable rapid parameter estimation for bioprocesses.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"21 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise aware parameter estimation in bioprocesses: Using neural network surrogate models with nonuniform data sampling\",\"authors\":\"Lauren Weir, Nigel Mathias, Brandon Corbett, Prashant Mhaskar\",\"doi\":\"10.1002/aic.18634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article demonstrates a parameter estimation technique for bioprocesses that utilizes measurement noise in experimental data to determine credible intervals on parameter estimates, with this information of potential use in prediction, robust control, and optimization. To determine these estimates, the work implements Bayesian inference using nested sampling, presenting an approach to develop neural network- (NN) based surrogate models. To address challenges associated with nonuniform sampling of experimental measurements, an NN structure is proposed. The resultant surrogate model is utilized within a Nested Sampling Algorithm that samples possible parameter values from the parameter space and uses the NN to calculate model output for use in the likelihood function based on the joint probability distribution of the noise of output variables. This method is illustrated against simulated data, then with experimental data from a Sartorius fed-batch bioprocess. Results demonstrate the feasibility of the proposed technique to enable rapid parameter estimation for bioprocesses.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18634\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18634","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了一种生物过程参数估计技术,该技术利用实验数据中的测量噪声来确定参数估计的可信区间,这些信息在预测、稳健控制和优化方面具有潜在用途。为了确定这些估计值,该研究利用嵌套采样实现了贝叶斯推理,提出了一种开发基于神经网络(NN)的代理模型的方法。为了应对与实验测量非均匀采样相关的挑战,提出了一种 NN 结构。由此产生的代用模型在嵌套采样算法中使用,该算法从参数空间采样可能的参数值,并根据输出变量噪声的联合概率分布,使用神经网络计算模型输出以用于似然函数。先用模拟数据说明了这种方法,然后用 Sartorius 喂料批次生物工艺的实验数据进行了说明。结果表明,所提出的技术是可行的,可以实现生物过程的快速参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise aware parameter estimation in bioprocesses: Using neural network surrogate models with nonuniform data sampling
This article demonstrates a parameter estimation technique for bioprocesses that utilizes measurement noise in experimental data to determine credible intervals on parameter estimates, with this information of potential use in prediction, robust control, and optimization. To determine these estimates, the work implements Bayesian inference using nested sampling, presenting an approach to develop neural network- (NN) based surrogate models. To address challenges associated with nonuniform sampling of experimental measurements, an NN structure is proposed. The resultant surrogate model is utilized within a Nested Sampling Algorithm that samples possible parameter values from the parameter space and uses the NN to calculate model output for use in the likelihood function based on the joint probability distribution of the noise of output variables. This method is illustrated against simulated data, then with experimental data from a Sartorius fed-batch bioprocess. Results demonstrate the feasibility of the proposed technique to enable rapid parameter estimation for bioprocesses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信