揭示正压力时自律性心血管控制的复杂性:数学模型的启示

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Martin Miranda Hurtado , Rafael Kaempfer , Justen R. Geddes , Mette S. Olufsen , Maria Rodriguez-Fernandez
{"title":"揭示正压力时自律性心血管控制的复杂性:数学模型的启示","authors":"Martin Miranda Hurtado ,&nbsp;Rafael Kaempfer ,&nbsp;Justen R. Geddes ,&nbsp;Mette S. Olufsen ,&nbsp;Maria Rodriguez-Fernandez","doi":"10.1016/j.mbs.2024.109306","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding cardiovascular control mediated by the autonomic system remains challenging due to its inherent complexity. Consequently, syndromes such as orthostatic intolerance continue to evoke debates regarding the underlying pathophysiological mechanisms. This study develops a comprehensive mathematical model simulating the control of the sympathetic branch of the cardiovascular system in individuals with normal and abnormal responses to the head-up-tilt test. We recruited four young women: one control, one with vasovagal syncope, one with orthostatic hypertension, and one with orthostatic hypotension, exposing them to an orthostatic head-up tilt test (HUTT) employing non-invasive methods to measure electrocardiography and continuous blood pressure.</div><div>Our work encompasses a compartmental model formulated using a system of ordinary differential equations. Using heart rate as input, we predict blood pressure, flow, and volume in compartments representing the veins, arteries, heart, and the sympathetic branch of the baroreflex control system. The latter is modulated by high- and low-pressure baroreceptor afferents activated by changes in blood pressure induced by the HUTT. Sensitivity analysis, parameter subset selection, and optimization are employed to estimate patient-specific parameters associated with autonomic performance. The model has seven sensitive and identifiable parameters with significant physiological relevance that can serve as biomarkers for patient classification.</div><div>Results show that the model can reproduce a spectrum of blood pressure responses successfully, fitting the trajectory displayed by the experimental data. The controller exhibits behavior that emulates the operation of the sympathetic system. These encouraging findings underscore the potential of computational methods in evaluating pathologies associated with autonomic nervous system control, warranting further exploration and novel approaches.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling autonomic cardiovascular control complexity during orthostatic stress: Insights from a mathematical model\",\"authors\":\"Martin Miranda Hurtado ,&nbsp;Rafael Kaempfer ,&nbsp;Justen R. Geddes ,&nbsp;Mette S. Olufsen ,&nbsp;Maria Rodriguez-Fernandez\",\"doi\":\"10.1016/j.mbs.2024.109306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding cardiovascular control mediated by the autonomic system remains challenging due to its inherent complexity. Consequently, syndromes such as orthostatic intolerance continue to evoke debates regarding the underlying pathophysiological mechanisms. This study develops a comprehensive mathematical model simulating the control of the sympathetic branch of the cardiovascular system in individuals with normal and abnormal responses to the head-up-tilt test. We recruited four young women: one control, one with vasovagal syncope, one with orthostatic hypertension, and one with orthostatic hypotension, exposing them to an orthostatic head-up tilt test (HUTT) employing non-invasive methods to measure electrocardiography and continuous blood pressure.</div><div>Our work encompasses a compartmental model formulated using a system of ordinary differential equations. Using heart rate as input, we predict blood pressure, flow, and volume in compartments representing the veins, arteries, heart, and the sympathetic branch of the baroreflex control system. The latter is modulated by high- and low-pressure baroreceptor afferents activated by changes in blood pressure induced by the HUTT. Sensitivity analysis, parameter subset selection, and optimization are employed to estimate patient-specific parameters associated with autonomic performance. The model has seven sensitive and identifiable parameters with significant physiological relevance that can serve as biomarkers for patient classification.</div><div>Results show that the model can reproduce a spectrum of blood pressure responses successfully, fitting the trajectory displayed by the experimental data. The controller exhibits behavior that emulates the operation of the sympathetic system. These encouraging findings underscore the potential of computational methods in evaluating pathologies associated with autonomic nervous system control, warranting further exploration and novel approaches.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001664\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001664","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于自律神经系统固有的复杂性,了解它对心血管的控制仍然具有挑战性。因此,诸如直立性不耐受等综合征仍在引起有关其潜在病理生理机制的争论。本研究建立了一个全面的数学模型,模拟了心血管系统交感神经分支对抬头仰卧试验的正常和异常反应。我们招募了四名年轻女性:一名对照组、一名血管迷走性晕厥患者、一名直立性高血压患者和一名直立性低血压患者,采用无创方法测量心电图和连续血压,让她们接受直立性抬头倾斜试验(HUTT)。我们的工作包括使用常微分方程系统建立一个分区模型。使用心率作为输入,我们预测了代表静脉、动脉、心脏和巴反射控制系统交感神经分支的分区中的血压、血流和血量。后者由 HUTT 引起的血压变化激活的高压和低压气压感受器传入进行调节。利用敏感性分析、参数子集选择和优化来估算与自律神经表现相关的患者特异性参数。该模型有七个敏感且可识别的参数,这些参数具有重要的生理相关性,可作为患者分类的生物标志物。结果表明,该模型能成功再现血压反应谱,与实验数据显示的轨迹相吻合。控制器表现出模拟交感系统运行的行为。这些令人鼓舞的发现强调了计算方法在评估与自主神经系统控制有关的病理方面的潜力,值得进一步探索和采用新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling autonomic cardiovascular control complexity during orthostatic stress: Insights from a mathematical model
Understanding cardiovascular control mediated by the autonomic system remains challenging due to its inherent complexity. Consequently, syndromes such as orthostatic intolerance continue to evoke debates regarding the underlying pathophysiological mechanisms. This study develops a comprehensive mathematical model simulating the control of the sympathetic branch of the cardiovascular system in individuals with normal and abnormal responses to the head-up-tilt test. We recruited four young women: one control, one with vasovagal syncope, one with orthostatic hypertension, and one with orthostatic hypotension, exposing them to an orthostatic head-up tilt test (HUTT) employing non-invasive methods to measure electrocardiography and continuous blood pressure.
Our work encompasses a compartmental model formulated using a system of ordinary differential equations. Using heart rate as input, we predict blood pressure, flow, and volume in compartments representing the veins, arteries, heart, and the sympathetic branch of the baroreflex control system. The latter is modulated by high- and low-pressure baroreceptor afferents activated by changes in blood pressure induced by the HUTT. Sensitivity analysis, parameter subset selection, and optimization are employed to estimate patient-specific parameters associated with autonomic performance. The model has seven sensitive and identifiable parameters with significant physiological relevance that can serve as biomarkers for patient classification.
Results show that the model can reproduce a spectrum of blood pressure responses successfully, fitting the trajectory displayed by the experimental data. The controller exhibits behavior that emulates the operation of the sympathetic system. These encouraging findings underscore the potential of computational methods in evaluating pathologies associated with autonomic nervous system control, warranting further exploration and novel approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信