Éva Domokos‑Szabolcsy , Áron Soós , Béla Kovács , Zoltán Kovács , Mihály Dernovics
{"title":"紫花苜蓿(Medicago sativa L.)绿色生物质衍生部分的水溶性有机硒代谢物。","authors":"Éva Domokos‑Szabolcsy , Áron Soós , Béla Kovács , Zoltán Kovács , Mihály Dernovics","doi":"10.1016/j.jtemb.2024.127545","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Tolerance of plants towards selenium, a non-essential microelement for higher plants, is a key issue when designing either the indirect (selenium-depletion from highly seleniferous soils) or directed (selenized feed production) enrichment of selenium in forages. Alfalfa (<em>Medicago sativa</em> L.), the well-known forage crop of the Fabaceae family, has been gaining considerable interest due to its application as a green manure, as a cover crop, or in soil remediation by nitrogen fixation.</div></div><div><h3>Objective</h3><div>The goal of our study was to assess into which selenocompounds alfalfa plants biotransform the excess selenium uptake from the soil. Selenocompounds (other than selenomethionine and inorganic forms) accumulated in the fiber and the so-called brown juice by-product fractions of processed alfalfa biomass were targeted.</div></div><div><h3>Methodology</h3><div>Inductively coupled plasma – mass spectrometry assisted multidimensional (strong anion exchange, strong cation exchange, reversed phase) orthogonal chromatographic purification was applied to supply Se-containing fractions in adequately high purity for electrospray high-resolution mass spectrometry (used for the first time for this matrix) analyses.</div></div><div><h3>Results</h3><div>As a total, 30 selenocompounds (with isomers) were described, showing the abundance of the derivatives of selenohexose, selenohomolanthionine, and 2,3-dihydroxypropionic acid. Out of the 30 selenocompounds, 15 could be assigned the elemental composition, and the tentative structure of five compounds including among others deamino-2-oxo-selenohomolanthionine, deamino-hydroxy-selenohomolanthionine, and the dimer of 2,3-dihydroxypropionyl-selenohomocysteine could be presented.</div></div><div><h3>Conclusions</h3><div>The studied fractions arising from the standard alfalfa processing technology contained a wide variety of selenocompounds whose origin can be either the plant’s inherent Se metabolism or the processing technology itself. The importance of negative mode data acquisition has been highlighted, as out of the 30 compounds, 16 could be detected exclusively in this electrospray ionization mode.</div></div>","PeriodicalId":49970,"journal":{"name":"Journal of Trace Elements in Medicine and Biology","volume":"86 ","pages":"Article 127545"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-soluble organic selenometabolites of alfalfa (Medicago sativa L.) green biomass-derived fractions\",\"authors\":\"Éva Domokos‑Szabolcsy , Áron Soós , Béla Kovács , Zoltán Kovács , Mihály Dernovics\",\"doi\":\"10.1016/j.jtemb.2024.127545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Tolerance of plants towards selenium, a non-essential microelement for higher plants, is a key issue when designing either the indirect (selenium-depletion from highly seleniferous soils) or directed (selenized feed production) enrichment of selenium in forages. Alfalfa (<em>Medicago sativa</em> L.), the well-known forage crop of the Fabaceae family, has been gaining considerable interest due to its application as a green manure, as a cover crop, or in soil remediation by nitrogen fixation.</div></div><div><h3>Objective</h3><div>The goal of our study was to assess into which selenocompounds alfalfa plants biotransform the excess selenium uptake from the soil. Selenocompounds (other than selenomethionine and inorganic forms) accumulated in the fiber and the so-called brown juice by-product fractions of processed alfalfa biomass were targeted.</div></div><div><h3>Methodology</h3><div>Inductively coupled plasma – mass spectrometry assisted multidimensional (strong anion exchange, strong cation exchange, reversed phase) orthogonal chromatographic purification was applied to supply Se-containing fractions in adequately high purity for electrospray high-resolution mass spectrometry (used for the first time for this matrix) analyses.</div></div><div><h3>Results</h3><div>As a total, 30 selenocompounds (with isomers) were described, showing the abundance of the derivatives of selenohexose, selenohomolanthionine, and 2,3-dihydroxypropionic acid. Out of the 30 selenocompounds, 15 could be assigned the elemental composition, and the tentative structure of five compounds including among others deamino-2-oxo-selenohomolanthionine, deamino-hydroxy-selenohomolanthionine, and the dimer of 2,3-dihydroxypropionyl-selenohomocysteine could be presented.</div></div><div><h3>Conclusions</h3><div>The studied fractions arising from the standard alfalfa processing technology contained a wide variety of selenocompounds whose origin can be either the plant’s inherent Se metabolism or the processing technology itself. The importance of negative mode data acquisition has been highlighted, as out of the 30 compounds, 16 could be detected exclusively in this electrospray ionization mode.</div></div>\",\"PeriodicalId\":49970,\"journal\":{\"name\":\"Journal of Trace Elements in Medicine and Biology\",\"volume\":\"86 \",\"pages\":\"Article 127545\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Trace Elements in Medicine and Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0946672X24001652\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Trace Elements in Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0946672X24001652","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Water-soluble organic selenometabolites of alfalfa (Medicago sativa L.) green biomass-derived fractions
Background
Tolerance of plants towards selenium, a non-essential microelement for higher plants, is a key issue when designing either the indirect (selenium-depletion from highly seleniferous soils) or directed (selenized feed production) enrichment of selenium in forages. Alfalfa (Medicago sativa L.), the well-known forage crop of the Fabaceae family, has been gaining considerable interest due to its application as a green manure, as a cover crop, or in soil remediation by nitrogen fixation.
Objective
The goal of our study was to assess into which selenocompounds alfalfa plants biotransform the excess selenium uptake from the soil. Selenocompounds (other than selenomethionine and inorganic forms) accumulated in the fiber and the so-called brown juice by-product fractions of processed alfalfa biomass were targeted.
Methodology
Inductively coupled plasma – mass spectrometry assisted multidimensional (strong anion exchange, strong cation exchange, reversed phase) orthogonal chromatographic purification was applied to supply Se-containing fractions in adequately high purity for electrospray high-resolution mass spectrometry (used for the first time for this matrix) analyses.
Results
As a total, 30 selenocompounds (with isomers) were described, showing the abundance of the derivatives of selenohexose, selenohomolanthionine, and 2,3-dihydroxypropionic acid. Out of the 30 selenocompounds, 15 could be assigned the elemental composition, and the tentative structure of five compounds including among others deamino-2-oxo-selenohomolanthionine, deamino-hydroxy-selenohomolanthionine, and the dimer of 2,3-dihydroxypropionyl-selenohomocysteine could be presented.
Conclusions
The studied fractions arising from the standard alfalfa processing technology contained a wide variety of selenocompounds whose origin can be either the plant’s inherent Se metabolism or the processing technology itself. The importance of negative mode data acquisition has been highlighted, as out of the 30 compounds, 16 could be detected exclusively in this electrospray ionization mode.
期刊介绍:
The journal provides the reader with a thorough description of theoretical and applied aspects of trace elements in medicine and biology and is devoted to the advancement of scientific knowledge about trace elements and trace element species. Trace elements play essential roles in the maintenance of physiological processes. During the last decades there has been a great deal of scientific investigation about the function and binding of trace elements. The Journal of Trace Elements in Medicine and Biology focuses on the description and dissemination of scientific results concerning the role of trace elements with respect to their mode of action in health and disease and nutritional importance. Progress in the knowledge of the biological role of trace elements depends, however, on advances in trace elements chemistry. Thus the Journal of Trace Elements in Medicine and Biology will include only those papers that base their results on proven analytical methods.
Also, we only publish those articles in which the quality assurance regarding the execution of experiments and achievement of results is guaranteed.