{"title":"骨内植入生物材料后的骨免疫调节研究进展:关注表面亲水性。","authors":"Xinpeng Wei, Linshan Lei, Ling Luo, Ying Zhou, Zheng Zheng and Wenchuan Chen","doi":"10.1039/D4TB01907E","DOIUrl":null,"url":null,"abstract":"<p >Biomaterials intended for intrabone implantation are extensively utilized in orthopedic and dental applications. Their surface properties, particularly hydrophilicity, significantly influence the biological interactions surrounding the implant, ultimately determining the implant's <em>in vivo</em> fate. Recently, the role of osteoimmunomodulation in these implantable biomaterials has been recognized for its importance in regulating biomaterial-mediated osteogenesis. Consequently, it is imperative to elucidate the correlation between hydrophilicity and the immune response for the development of osteoimmunomodulatory implants. Herein, this review highlights recent advances in osteoimmunomodulation of biomaterials after intrabone implantation from a novel perspective—surface hydrophilicity, and summarizes the series of immune reactions and subsequent bone remodeling that occur in response to hydrophilic implants, focusing on protein adsorption, the behaviors of major immune cells, and osteoimmunomodulation-enhanced angiogenesis and osteogenesis. Hydrophilic biomaterials have the capacity to alter the surrounding immune microenvironment and accelerate the process of material-tissue bonding, thereby facilitating the successful integration of biomaterials with tissue. Collectively, the authors hope that this article provides strategies for modulating hydrophilicity to achieve osteoimmunomodulatory performance and further promotes the development of novel implantable biomaterials for orthopedic and dental applications.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 43","pages":" 11089-11104"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in osteoimmunomodulation of biomaterials after intrabone implantation: focus on surface hydrophilicity\",\"authors\":\"Xinpeng Wei, Linshan Lei, Ling Luo, Ying Zhou, Zheng Zheng and Wenchuan Chen\",\"doi\":\"10.1039/D4TB01907E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biomaterials intended for intrabone implantation are extensively utilized in orthopedic and dental applications. Their surface properties, particularly hydrophilicity, significantly influence the biological interactions surrounding the implant, ultimately determining the implant's <em>in vivo</em> fate. Recently, the role of osteoimmunomodulation in these implantable biomaterials has been recognized for its importance in regulating biomaterial-mediated osteogenesis. Consequently, it is imperative to elucidate the correlation between hydrophilicity and the immune response for the development of osteoimmunomodulatory implants. Herein, this review highlights recent advances in osteoimmunomodulation of biomaterials after intrabone implantation from a novel perspective—surface hydrophilicity, and summarizes the series of immune reactions and subsequent bone remodeling that occur in response to hydrophilic implants, focusing on protein adsorption, the behaviors of major immune cells, and osteoimmunomodulation-enhanced angiogenesis and osteogenesis. Hydrophilic biomaterials have the capacity to alter the surrounding immune microenvironment and accelerate the process of material-tissue bonding, thereby facilitating the successful integration of biomaterials with tissue. Collectively, the authors hope that this article provides strategies for modulating hydrophilicity to achieve osteoimmunomodulatory performance and further promotes the development of novel implantable biomaterials for orthopedic and dental applications.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 43\",\"pages\":\" 11089-11104\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01907e\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01907e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Advances in osteoimmunomodulation of biomaterials after intrabone implantation: focus on surface hydrophilicity
Biomaterials intended for intrabone implantation are extensively utilized in orthopedic and dental applications. Their surface properties, particularly hydrophilicity, significantly influence the biological interactions surrounding the implant, ultimately determining the implant's in vivo fate. Recently, the role of osteoimmunomodulation in these implantable biomaterials has been recognized for its importance in regulating biomaterial-mediated osteogenesis. Consequently, it is imperative to elucidate the correlation between hydrophilicity and the immune response for the development of osteoimmunomodulatory implants. Herein, this review highlights recent advances in osteoimmunomodulation of biomaterials after intrabone implantation from a novel perspective—surface hydrophilicity, and summarizes the series of immune reactions and subsequent bone remodeling that occur in response to hydrophilic implants, focusing on protein adsorption, the behaviors of major immune cells, and osteoimmunomodulation-enhanced angiogenesis and osteogenesis. Hydrophilic biomaterials have the capacity to alter the surrounding immune microenvironment and accelerate the process of material-tissue bonding, thereby facilitating the successful integration of biomaterials with tissue. Collectively, the authors hope that this article provides strategies for modulating hydrophilicity to achieve osteoimmunomodulatory performance and further promotes the development of novel implantable biomaterials for orthopedic and dental applications.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices