利用导电墨水和聚合物厚膜网实现高质量多模态磁共振成像与同步脑电图。

Nicholas G Cicero, Nina E Fultz, Hongbae Jeong, Stephanie D Williams, Daniel Gomez, Beverly Setzer, Tracy Warbrick, Manfred Jaschke, Ravij Gupta, Michael Lev, Giorgio Bonmassar, Laura D Lewis
{"title":"利用导电墨水和聚合物厚膜网实现高质量多模态磁共振成像与同步脑电图。","authors":"Nicholas G Cicero, Nina E Fultz, Hongbae Jeong, Stephanie D Williams, Daniel Gomez, Beverly Setzer, Tracy Warbrick, Manfred Jaschke, Ravij Gupta, Michael Lev, Giorgio Bonmassar, Laura D Lewis","doi":"10.1088/1741-2552/ad8837","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Combining magnetic resonance imaging (MRI) and electroencephalography (EEG) provides a powerful tool for investigating brain function at varying spatial and temporal scales. Simultaneous acquisition of both modalities can provide unique information that a single modality alone cannot reveal. However, current simultaneous EEG-fMRI studies are limited to a small set of MRI sequences due to the image quality and safety limitations of commercially available MR-conditional EEG nets. We tested whether the Inknet2, a high-resistance polymer thick film based EEG net that uses conductive ink, could enable the acquisition of a variety of MR image modalities with minimal artifacts by reducing the radiofrequency-shielding caused by traditional MR-conditional nets.<i>Approach</i>. We first performed simulations to model the effect of the EEG nets on the magnetic field and image quality. We then performed phantom scans to test image quality with a conventional copper EEG net, with the new Inknet2, and without any EEG net. Finally, we scanned five human subjects at 3 Tesla (3 T) and three human subjects at 7 Tesla (7 T) with and without the Inknet2 to assess structural and functional MRI image quality.<i>Main results</i>. Across these simulations, phantom scans, and human studies, the Inknet2 induced fewer artifacts than the conventional net and produced image quality similar to scans with no net present.<i>Significance</i>. Our results demonstrate that high-quality structural and functional multimodal imaging across a variety of MRI pulse sequences at both 3 T and 7 T is achievable with an EEG net made with conductive ink and polymer thick film technology.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-quality multimodal MRI with simultaneous EEG using conductive ink and polymer-thick film nets.\",\"authors\":\"Nicholas G Cicero, Nina E Fultz, Hongbae Jeong, Stephanie D Williams, Daniel Gomez, Beverly Setzer, Tracy Warbrick, Manfred Jaschke, Ravij Gupta, Michael Lev, Giorgio Bonmassar, Laura D Lewis\",\"doi\":\"10.1088/1741-2552/ad8837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Combining magnetic resonance imaging (MRI) and electroencephalography (EEG) provides a powerful tool for investigating brain function at varying spatial and temporal scales. Simultaneous acquisition of both modalities can provide unique information that a single modality alone cannot reveal. However, current simultaneous EEG-fMRI studies are limited to a small set of MRI sequences due to the image quality and safety limitations of commercially available MR-conditional EEG nets. We tested whether the Inknet2, a high-resistance polymer thick film based EEG net that uses conductive ink, could enable the acquisition of a variety of MR image modalities with minimal artifacts by reducing the radiofrequency-shielding caused by traditional MR-conditional nets.<i>Approach</i>. We first performed simulations to model the effect of the EEG nets on the magnetic field and image quality. We then performed phantom scans to test image quality with a conventional copper EEG net, with the new Inknet2, and without any EEG net. Finally, we scanned five human subjects at 3 Tesla (3 T) and three human subjects at 7 Tesla (7 T) with and without the Inknet2 to assess structural and functional MRI image quality.<i>Main results</i>. Across these simulations, phantom scans, and human studies, the Inknet2 induced fewer artifacts than the conventional net and produced image quality similar to scans with no net present.<i>Significance</i>. Our results demonstrate that high-quality structural and functional multimodal imaging across a variety of MRI pulse sequences at both 3 T and 7 T is achievable with an EEG net made with conductive ink and polymer thick film technology.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad8837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad8837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标 结合磁共振成像(MRI)和脑电图(EEG)为研究不同空间和时间尺度的大脑功能提供了强有力的工具。同时采集两种模式可提供单一模式无法显示的独特信息。然而,由于市售磁共振条件脑电图网的图像质量和安全性限制,目前的脑电图-磁共振成像同步研究仅限于一小部分磁共振成像序列。我们测试了基于高阻聚合物厚膜 (PTF) 的脑电图网 Inknet2(使用导电墨水)能否通过减少传统磁共振条件网造成的射频屏蔽,以最小的伪影获取各种磁共振图像模式。然后,我们进行了幻影扫描,以测试使用传统铜脑电图网、新型 Inknet2 和不使用任何脑电图网时的图像质量。最后,我们在 3 Tesla (3T) 和 7 Tesla (7T) 下分别扫描了五名人体受试者和三名人体受试者,分别使用和不使用 Inknet2 来评估结构性和功能性 MRI 图像质量。 主要结果 在这些模拟、模型扫描和人体研究中,Inknet2 比传统磁网引起的伪影更少,产生的图像质量与不使用任何磁网的扫描相似。 意义 我们的研究结果表明,使用导电墨水和聚合物厚膜技术制造的脑电图网可以在 3T 和 7T 下通过各种磁共振成像脉冲序列实现高质量的结构和功能多模态成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-quality multimodal MRI with simultaneous EEG using conductive ink and polymer-thick film nets.

Objective. Combining magnetic resonance imaging (MRI) and electroencephalography (EEG) provides a powerful tool for investigating brain function at varying spatial and temporal scales. Simultaneous acquisition of both modalities can provide unique information that a single modality alone cannot reveal. However, current simultaneous EEG-fMRI studies are limited to a small set of MRI sequences due to the image quality and safety limitations of commercially available MR-conditional EEG nets. We tested whether the Inknet2, a high-resistance polymer thick film based EEG net that uses conductive ink, could enable the acquisition of a variety of MR image modalities with minimal artifacts by reducing the radiofrequency-shielding caused by traditional MR-conditional nets.Approach. We first performed simulations to model the effect of the EEG nets on the magnetic field and image quality. We then performed phantom scans to test image quality with a conventional copper EEG net, with the new Inknet2, and without any EEG net. Finally, we scanned five human subjects at 3 Tesla (3 T) and three human subjects at 7 Tesla (7 T) with and without the Inknet2 to assess structural and functional MRI image quality.Main results. Across these simulations, phantom scans, and human studies, the Inknet2 induced fewer artifacts than the conventional net and produced image quality similar to scans with no net present.Significance. Our results demonstrate that high-quality structural and functional multimodal imaging across a variety of MRI pulse sequences at both 3 T and 7 T is achievable with an EEG net made with conductive ink and polymer thick film technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信