Haoqi Yang, Ziyong Wu, Shujuan Sun, Shusheng Zhang and Pengfei Shi
{"title":"基于 DNA 纳米线的 DNA 酶步行器,用于肿瘤细胞中微小核糖核酸的放大成像。","authors":"Haoqi Yang, Ziyong Wu, Shujuan Sun, Shusheng Zhang and Pengfei Shi","doi":"10.1039/D4TB01703J","DOIUrl":null,"url":null,"abstract":"<p >Sensitive imaging of microRNAs (miRNAs) in tumor cells holds great significance in the domains of pathology, drug development, and personalized diagnosis and treatment. DNA nanostructures possess excellent biostability and programmability and are suitable as carriers for intracellular imaging probes. With its highly controllable motion mechanism and remarkable target recognition specificity, the DNA walker is an ideal tool for living cell imaging. Here, we report a DNA nanowire based-DNAzyme Walker (D-Walker), which loads the DNAzyme based-molecular beacon (D-MB) onto DNA nanowires (NWs) functionalized with aptamers. The experimental results demonstrated that the intracellular target miRNA can specifically activate the pre-locked DNAzyme through a strand displacement reaction, thereby triggering the cleavage of its substrate molecular beacon (MB) and subsequent fluorescence emission. NWs decorated with aptamers can effectively prevent the degradation of the D-Walker by nuclease, and can enter target cells without any transfection reagents, which enhances the stability and reliability of cell imaging. Furthermore, the D-Walker exhibited a remarkable sensitivity with a limit of detection (LOD) of 61 pM and was capable of distinguishing miRNA-21 from other closely related family members. This study provides a novel strategy for intracellular miRNA imaging, offering a promising tool for cancer diagnosis and treatment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DNA nanowire based-DNAzyme walker for amplified imaging of microRNA in tumor cells†\",\"authors\":\"Haoqi Yang, Ziyong Wu, Shujuan Sun, Shusheng Zhang and Pengfei Shi\",\"doi\":\"10.1039/D4TB01703J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sensitive imaging of microRNAs (miRNAs) in tumor cells holds great significance in the domains of pathology, drug development, and personalized diagnosis and treatment. DNA nanostructures possess excellent biostability and programmability and are suitable as carriers for intracellular imaging probes. With its highly controllable motion mechanism and remarkable target recognition specificity, the DNA walker is an ideal tool for living cell imaging. Here, we report a DNA nanowire based-DNAzyme Walker (D-Walker), which loads the DNAzyme based-molecular beacon (D-MB) onto DNA nanowires (NWs) functionalized with aptamers. The experimental results demonstrated that the intracellular target miRNA can specifically activate the pre-locked DNAzyme through a strand displacement reaction, thereby triggering the cleavage of its substrate molecular beacon (MB) and subsequent fluorescence emission. NWs decorated with aptamers can effectively prevent the degradation of the D-Walker by nuclease, and can enter target cells without any transfection reagents, which enhances the stability and reliability of cell imaging. Furthermore, the D-Walker exhibited a remarkable sensitivity with a limit of detection (LOD) of 61 pM and was capable of distinguishing miRNA-21 from other closely related family members. This study provides a novel strategy for intracellular miRNA imaging, offering a promising tool for cancer diagnosis and treatment.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01703j\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01703j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A DNA nanowire based-DNAzyme walker for amplified imaging of microRNA in tumor cells†
Sensitive imaging of microRNAs (miRNAs) in tumor cells holds great significance in the domains of pathology, drug development, and personalized diagnosis and treatment. DNA nanostructures possess excellent biostability and programmability and are suitable as carriers for intracellular imaging probes. With its highly controllable motion mechanism and remarkable target recognition specificity, the DNA walker is an ideal tool for living cell imaging. Here, we report a DNA nanowire based-DNAzyme Walker (D-Walker), which loads the DNAzyme based-molecular beacon (D-MB) onto DNA nanowires (NWs) functionalized with aptamers. The experimental results demonstrated that the intracellular target miRNA can specifically activate the pre-locked DNAzyme through a strand displacement reaction, thereby triggering the cleavage of its substrate molecular beacon (MB) and subsequent fluorescence emission. NWs decorated with aptamers can effectively prevent the degradation of the D-Walker by nuclease, and can enter target cells without any transfection reagents, which enhances the stability and reliability of cell imaging. Furthermore, the D-Walker exhibited a remarkable sensitivity with a limit of detection (LOD) of 61 pM and was capable of distinguishing miRNA-21 from other closely related family members. This study provides a novel strategy for intracellular miRNA imaging, offering a promising tool for cancer diagnosis and treatment.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices