{"title":"乳腺癌放射治疗中新的二维几何参数与肺和心脏剂量-体积参数的相关性。","authors":"Maryam Bahador, Simin Soltaninejad, Mosayyeb Mobasheri","doi":"10.4103/jcrt.jcrt_2351_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop new two-dimensional geometric parameters for pulmonary and cardiac dose estimation in left-sided breast cancer radiation therapy without dose-volume histogram (DVH).</p><p><strong>Methods: </strong>On the CT image of 90 patients with left breast cancer, treatment planning was performed using two opposed tangent fields with/without supraclavicular. The field-in-field technique and 6MV photons were used. From DVH dosimetric parameters of mean dose, Vx (x (Gy) =5, 10, 15, 20, 30, 40, 50) were calculated, and from heart and lung outlines on the beam's eye view, new geometric parameters of percent of lung area in tangent and supraclavicular fields (%area of the lung in the tangent (ALT), %ALS) and percent of heart in tangent field (%area of the heart in the tangent (AHT)) were measured. Correlation, regression, and diagnostic performance by receiver operating characteristic curve (ROC) were investigated for statistical analysis.</p><p><strong>Results: </strong>The Pearson coefficient between %ALT and Vx (x = 10, 15, 20, 30, 40) show strong correlation in patient treatment with only opposed tangents (>0.85) and weaker in treatment by opposed tangents with supraclavicular (0.56-0.88), the %ALS indicate weak correlation (<0.5) and %AHT show strong correlation (0.93-0.98). The regression analysis shows a positive relation between %ALT and mean dose (R2 = 0.8), V20Gy (R2 = 0.9) in the lung (tangent treatment), and between %AHT and mean dose (R2 = 0.9), V20Gy (R2 = 1.0) in the heart. The ROC analysis shows by %ALT <20.3 for treatment by just opposed fields, %ALT <22.1% for treatment tangents with supra, and %AHT <11.6%, practical lung and heart dose constraints are addressed.</p><p><strong>Conclusion: </strong>The proposed geometric parameters could replace previous one-dimensional maximum and central distances for predicting doses to lung and heart.</p><p><strong>Advances in knowledge: </strong>This study presents simple geometric parameters that could estimate pulmonary and cardiac dose in left breast cancer treatment from a 2D radiograph.</p>","PeriodicalId":94070,"journal":{"name":"Journal of cancer research and therapeutics","volume":"20 5","pages":"1570-1577"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation of new two-dimensional geometrical parameters to lung and heart dose-volume parameters in breast cancer radiation therapy.\",\"authors\":\"Maryam Bahador, Simin Soltaninejad, Mosayyeb Mobasheri\",\"doi\":\"10.4103/jcrt.jcrt_2351_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To develop new two-dimensional geometric parameters for pulmonary and cardiac dose estimation in left-sided breast cancer radiation therapy without dose-volume histogram (DVH).</p><p><strong>Methods: </strong>On the CT image of 90 patients with left breast cancer, treatment planning was performed using two opposed tangent fields with/without supraclavicular. The field-in-field technique and 6MV photons were used. From DVH dosimetric parameters of mean dose, Vx (x (Gy) =5, 10, 15, 20, 30, 40, 50) were calculated, and from heart and lung outlines on the beam's eye view, new geometric parameters of percent of lung area in tangent and supraclavicular fields (%area of the lung in the tangent (ALT), %ALS) and percent of heart in tangent field (%area of the heart in the tangent (AHT)) were measured. Correlation, regression, and diagnostic performance by receiver operating characteristic curve (ROC) were investigated for statistical analysis.</p><p><strong>Results: </strong>The Pearson coefficient between %ALT and Vx (x = 10, 15, 20, 30, 40) show strong correlation in patient treatment with only opposed tangents (>0.85) and weaker in treatment by opposed tangents with supraclavicular (0.56-0.88), the %ALS indicate weak correlation (<0.5) and %AHT show strong correlation (0.93-0.98). The regression analysis shows a positive relation between %ALT and mean dose (R2 = 0.8), V20Gy (R2 = 0.9) in the lung (tangent treatment), and between %AHT and mean dose (R2 = 0.9), V20Gy (R2 = 1.0) in the heart. The ROC analysis shows by %ALT <20.3 for treatment by just opposed fields, %ALT <22.1% for treatment tangents with supra, and %AHT <11.6%, practical lung and heart dose constraints are addressed.</p><p><strong>Conclusion: </strong>The proposed geometric parameters could replace previous one-dimensional maximum and central distances for predicting doses to lung and heart.</p><p><strong>Advances in knowledge: </strong>This study presents simple geometric parameters that could estimate pulmonary and cardiac dose in left breast cancer treatment from a 2D radiograph.</p>\",\"PeriodicalId\":94070,\"journal\":{\"name\":\"Journal of cancer research and therapeutics\",\"volume\":\"20 5\",\"pages\":\"1570-1577\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cancer research and therapeutics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jcrt.jcrt_2351_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cancer research and therapeutics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jcrt.jcrt_2351_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Correlation of new two-dimensional geometrical parameters to lung and heart dose-volume parameters in breast cancer radiation therapy.
Objective: To develop new two-dimensional geometric parameters for pulmonary and cardiac dose estimation in left-sided breast cancer radiation therapy without dose-volume histogram (DVH).
Methods: On the CT image of 90 patients with left breast cancer, treatment planning was performed using two opposed tangent fields with/without supraclavicular. The field-in-field technique and 6MV photons were used. From DVH dosimetric parameters of mean dose, Vx (x (Gy) =5, 10, 15, 20, 30, 40, 50) were calculated, and from heart and lung outlines on the beam's eye view, new geometric parameters of percent of lung area in tangent and supraclavicular fields (%area of the lung in the tangent (ALT), %ALS) and percent of heart in tangent field (%area of the heart in the tangent (AHT)) were measured. Correlation, regression, and diagnostic performance by receiver operating characteristic curve (ROC) were investigated for statistical analysis.
Results: The Pearson coefficient between %ALT and Vx (x = 10, 15, 20, 30, 40) show strong correlation in patient treatment with only opposed tangents (>0.85) and weaker in treatment by opposed tangents with supraclavicular (0.56-0.88), the %ALS indicate weak correlation (<0.5) and %AHT show strong correlation (0.93-0.98). The regression analysis shows a positive relation between %ALT and mean dose (R2 = 0.8), V20Gy (R2 = 0.9) in the lung (tangent treatment), and between %AHT and mean dose (R2 = 0.9), V20Gy (R2 = 1.0) in the heart. The ROC analysis shows by %ALT <20.3 for treatment by just opposed fields, %ALT <22.1% for treatment tangents with supra, and %AHT <11.6%, practical lung and heart dose constraints are addressed.
Conclusion: The proposed geometric parameters could replace previous one-dimensional maximum and central distances for predicting doses to lung and heart.
Advances in knowledge: This study presents simple geometric parameters that could estimate pulmonary and cardiac dose in left breast cancer treatment from a 2D radiograph.