形状记忆聚合物支架的生物相容性和骨再生。

Shelby B Gasson, Lauren K Dobson, Michaela R Pfau-Cloud, Felipe O Beltran, Roy R Pool, Carl A Gregory, Melissa A Grunlan, W Brian Saunders
{"title":"形状记忆聚合物支架的生物相容性和骨再生。","authors":"Shelby B Gasson, Lauren K Dobson, Michaela R Pfau-Cloud, Felipe O Beltran, Roy R Pool, Carl A Gregory, Melissa A Grunlan, W Brian Saunders","doi":"10.1002/jbm.a.37806","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradable, shape memory polymer (SMP) scaffolds based on poly(ε-caprolactone) (PCL) offer unique advantages as a regenerative treatment strategy for critical-sized bone defects. In particular, a conformal fit may be achieved following exposure to warm saline, thereby improving osseointegration and regeneration. Advancing the clinical translation of these SMP scaffolds requires establishment of efficacy not only in non-loading models, but also load-bearing or load-sharing models. Thus, the present study evaluated the biocompatibility and bone regeneration potential of SMP scaffolds in a rabbit distal femoral condyle model. Two distinct SMP scaffold compositions were evaluated, a \"PCL-only\" scaffold formed from PCL-diacrylate (PCL-DA) and a semi-interpenetrating network (semi-IPN) formed from PCL-DA and poly(L-lactic acid) (PCL:PLLA). Semi-IPN PCL:PLLA scaffolds possess greater rigidity and faster rates of degradation versus PCL scaffolds. In vivo biocompatibility was assessed with a rat subcutaneous implantation model, whereas osseointegration was assessed with a 4 mm × 8 mm rabbit distal femoral condyle defect model. Both types of SMP scaffolds exhibited excellent biocompatibility marked by infiltration with fibrous tissue and a minimal inflammatory response. When implanted in the rabbit distal femur, both SMP scaffolds supported bone ingrowth. Collectively, these results demonstrate that the SMP scaffolds are biocompatible and integrate with adjacent host osseous tissues when implanted in vivo in a load-sharing environment. This study provides key proof-of-concept data necessary to proceed with large animal translational studies and clinical trials in human subjects.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biocompatibility and Bone Regeneration by Shape Memory Polymer Scaffolds.\",\"authors\":\"Shelby B Gasson, Lauren K Dobson, Michaela R Pfau-Cloud, Felipe O Beltran, Roy R Pool, Carl A Gregory, Melissa A Grunlan, W Brian Saunders\",\"doi\":\"10.1002/jbm.a.37806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biodegradable, shape memory polymer (SMP) scaffolds based on poly(ε-caprolactone) (PCL) offer unique advantages as a regenerative treatment strategy for critical-sized bone defects. In particular, a conformal fit may be achieved following exposure to warm saline, thereby improving osseointegration and regeneration. Advancing the clinical translation of these SMP scaffolds requires establishment of efficacy not only in non-loading models, but also load-bearing or load-sharing models. Thus, the present study evaluated the biocompatibility and bone regeneration potential of SMP scaffolds in a rabbit distal femoral condyle model. Two distinct SMP scaffold compositions were evaluated, a \\\"PCL-only\\\" scaffold formed from PCL-diacrylate (PCL-DA) and a semi-interpenetrating network (semi-IPN) formed from PCL-DA and poly(L-lactic acid) (PCL:PLLA). Semi-IPN PCL:PLLA scaffolds possess greater rigidity and faster rates of degradation versus PCL scaffolds. In vivo biocompatibility was assessed with a rat subcutaneous implantation model, whereas osseointegration was assessed with a 4 mm × 8 mm rabbit distal femoral condyle defect model. Both types of SMP scaffolds exhibited excellent biocompatibility marked by infiltration with fibrous tissue and a minimal inflammatory response. When implanted in the rabbit distal femur, both SMP scaffolds supported bone ingrowth. Collectively, these results demonstrate that the SMP scaffolds are biocompatible and integrate with adjacent host osseous tissues when implanted in vivo in a load-sharing environment. This study provides key proof-of-concept data necessary to proceed with large animal translational studies and clinical trials in human subjects.</p>\",\"PeriodicalId\":94066,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbm.a.37806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbm.a.37806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于聚(ε-己内酯)(PCL)的可生物降解形状记忆聚合物(SMP)支架作为临界大小骨缺损的再生治疗策略具有独特的优势。特别是,在暴露于温生理盐水后可实现保形贴合,从而改善骨结合和再生。要推进这些 SMP 支架的临床转化,不仅需要在非负载模型中建立疗效,还需要在负载或负载分担模型中建立疗效。因此,本研究在兔子股骨远端髁模型中评估了 SMP 支架的生物相容性和骨再生潜力。本研究评估了两种不同的 SMP 支架成分,一种是由 PCL-二丙烯酸酯(PCL-DA)形成的 "纯 PCL "支架,另一种是由 PCL-DA 和聚(L-乳酸)(PCL:PLLA)形成的半穿透网络(semi-IPN)。与 PCL 支架相比,半互穿网络 PCL:PLLA 支架具有更高的硬度和更快的降解速度。体内生物相容性通过大鼠皮下植入模型进行评估,骨结合则通过 4 mm × 8 mm 兔子股骨远端髁缺损模型进行评估。两种类型的 SMP 支架都表现出极佳的生物相容性,其特征是纤维组织浸润和极小的炎症反应。植入兔股骨远端后,两种 SMP 支架都能支持骨生长。总之,这些结果表明,SMP 支架具有生物相容性,在体内植入时可与邻近的宿主骨组织在负载分担的环境中整合。这项研究为开展大型动物转化研究和人体临床试验提供了必要的关键概念验证数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biocompatibility and Bone Regeneration by Shape Memory Polymer Scaffolds.

Biodegradable, shape memory polymer (SMP) scaffolds based on poly(ε-caprolactone) (PCL) offer unique advantages as a regenerative treatment strategy for critical-sized bone defects. In particular, a conformal fit may be achieved following exposure to warm saline, thereby improving osseointegration and regeneration. Advancing the clinical translation of these SMP scaffolds requires establishment of efficacy not only in non-loading models, but also load-bearing or load-sharing models. Thus, the present study evaluated the biocompatibility and bone regeneration potential of SMP scaffolds in a rabbit distal femoral condyle model. Two distinct SMP scaffold compositions were evaluated, a "PCL-only" scaffold formed from PCL-diacrylate (PCL-DA) and a semi-interpenetrating network (semi-IPN) formed from PCL-DA and poly(L-lactic acid) (PCL:PLLA). Semi-IPN PCL:PLLA scaffolds possess greater rigidity and faster rates of degradation versus PCL scaffolds. In vivo biocompatibility was assessed with a rat subcutaneous implantation model, whereas osseointegration was assessed with a 4 mm × 8 mm rabbit distal femoral condyle defect model. Both types of SMP scaffolds exhibited excellent biocompatibility marked by infiltration with fibrous tissue and a minimal inflammatory response. When implanted in the rabbit distal femur, both SMP scaffolds supported bone ingrowth. Collectively, these results demonstrate that the SMP scaffolds are biocompatible and integrate with adjacent host osseous tissues when implanted in vivo in a load-sharing environment. This study provides key proof-of-concept data necessary to proceed with large animal translational studies and clinical trials in human subjects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信