{"title":"与轻度脑外伤神经认知功能相关的脑电图振荡活动和静息状态网络。","authors":"Masaya Ueda, Keita Ueno, Takuma Yuri, Yasunori Aoki, Masahiro Hata, Takao Inoue, Ryouhei Ishii, Yasuo Naito","doi":"10.1177/15500594241290858","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the characteristics of resting-state electroencephalography (EEG) activity and brain networks in patients with mild traumatic brain injury (mTBI) and their association with neurocognitive function (NCF). We analyzed 26 patients with subacute mTBI and 21 healthy controls. The subacute mTBI group (9 females, 17 males) had a mean age of 29.9 ± 9.9 years, and the healthy controls (11 females, 10 males) had a mean age of 29.7 ± 11.5 years. Current source density, lagged phase synchronization, and resting-state network activity were analyzed using exact low-resolution electromagnetic tomography (eLORETA) with 60 s resting-state EEG data. In addition, a correlation analysis was performed between these EEG parameters and NCF in patients with mTBI. We used the statistical nonparametric mapping method in eLORETA to correct for multiple comparisons. There were no significant differences in EEG parameters between the patients with mTBI and healthy controls. However, in patients with mTBI, correlation analysis revealed negative correlations between theta activity in the anterior cingulate cortex and verbal short-term memory and between activity in the memory perception network and verbal memory. Our findings suggest that resting-state EEG may be clinically useful in investigating the mechanism of NCF decline in patients with mTBI.</p>","PeriodicalId":93940,"journal":{"name":"Clinical EEG and neuroscience","volume":" ","pages":"15500594241290858"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG Oscillatory Activity and Resting-State Networks Associated with Neurocognitive Function in Mild Traumatic Brain Injury.\",\"authors\":\"Masaya Ueda, Keita Ueno, Takuma Yuri, Yasunori Aoki, Masahiro Hata, Takao Inoue, Ryouhei Ishii, Yasuo Naito\",\"doi\":\"10.1177/15500594241290858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to investigate the characteristics of resting-state electroencephalography (EEG) activity and brain networks in patients with mild traumatic brain injury (mTBI) and their association with neurocognitive function (NCF). We analyzed 26 patients with subacute mTBI and 21 healthy controls. The subacute mTBI group (9 females, 17 males) had a mean age of 29.9 ± 9.9 years, and the healthy controls (11 females, 10 males) had a mean age of 29.7 ± 11.5 years. Current source density, lagged phase synchronization, and resting-state network activity were analyzed using exact low-resolution electromagnetic tomography (eLORETA) with 60 s resting-state EEG data. In addition, a correlation analysis was performed between these EEG parameters and NCF in patients with mTBI. We used the statistical nonparametric mapping method in eLORETA to correct for multiple comparisons. There were no significant differences in EEG parameters between the patients with mTBI and healthy controls. However, in patients with mTBI, correlation analysis revealed negative correlations between theta activity in the anterior cingulate cortex and verbal short-term memory and between activity in the memory perception network and verbal memory. Our findings suggest that resting-state EEG may be clinically useful in investigating the mechanism of NCF decline in patients with mTBI.</p>\",\"PeriodicalId\":93940,\"journal\":{\"name\":\"Clinical EEG and neuroscience\",\"volume\":\" \",\"pages\":\"15500594241290858\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical EEG and neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15500594241290858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical EEG and neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15500594241290858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EEG Oscillatory Activity and Resting-State Networks Associated with Neurocognitive Function in Mild Traumatic Brain Injury.
This study aimed to investigate the characteristics of resting-state electroencephalography (EEG) activity and brain networks in patients with mild traumatic brain injury (mTBI) and their association with neurocognitive function (NCF). We analyzed 26 patients with subacute mTBI and 21 healthy controls. The subacute mTBI group (9 females, 17 males) had a mean age of 29.9 ± 9.9 years, and the healthy controls (11 females, 10 males) had a mean age of 29.7 ± 11.5 years. Current source density, lagged phase synchronization, and resting-state network activity were analyzed using exact low-resolution electromagnetic tomography (eLORETA) with 60 s resting-state EEG data. In addition, a correlation analysis was performed between these EEG parameters and NCF in patients with mTBI. We used the statistical nonparametric mapping method in eLORETA to correct for multiple comparisons. There were no significant differences in EEG parameters between the patients with mTBI and healthy controls. However, in patients with mTBI, correlation analysis revealed negative correlations between theta activity in the anterior cingulate cortex and verbal short-term memory and between activity in the memory perception network and verbal memory. Our findings suggest that resting-state EEG may be clinically useful in investigating the mechanism of NCF decline in patients with mTBI.