在甲烷干法转化过程中,还原温度如何影响过氧化物催化剂的结构。

Florian Schrenk, Lorenz Lindenthal, Hedda Drexler, Tobias Berger, Raffael Rameshan, Thomas Ruh, Karin Föttinger and Christoph Rameshan
{"title":"在甲烷干法转化过程中,还原温度如何影响过氧化物催化剂的结构。","authors":"Florian Schrenk, Lorenz Lindenthal, Hedda Drexler, Tobias Berger, Raffael Rameshan, Thomas Ruh, Karin Föttinger and Christoph Rameshan","doi":"10.1039/D4SU00483C","DOIUrl":null,"url":null,"abstract":"<p >Dry reforming of methane is a promising reaction to convert CO<small><sub>2</sub></small> and combat climate change. However, the reaction is still not feasible in large-scale industrial applications. The thermodynamic need for high temperatures and the potential of carbon deposition leads to high requirements for potential catalyst materials. As shown in previous publications, the Ni-doped perovskite-oxide Nd<small><sub>0.6</sub></small>Ca<small><sub>0.4</sub></small>Fe<small><sub>0.97</sub></small>Ni<small><sub>0.03</sub></small>O<small><sub>3</sub></small> is a potential candidate as it can exsolve highly active Ni nanoparticles on its surface. This study focused on controlling the particle size by varying the reduction temperature. We found the optimal temperature that allows the Ni nanoparticles to exsolve while not yet enabling the formation of deactivating CaCO<small><sub>3</sub></small>. Furthermore, the exsolution process and the behaviour of the phases during the dry reforming of methane were investigated using <em>in situ</em> XRD measurements at the DESY beamline P02.1 at PETRA III in Hamburg. They revealed that the formed deactivated phases would, at high temperatures, form a brownmillerite phase, thus hinting at a potential self-healing mechanism of these materials.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 11","pages":" 3334-3344"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465801/pdf/","citationCount":"0","resultStr":"{\"title\":\"How reduction temperature influences the structure of perovskite-oxide catalysts during the dry reforming of methane†\",\"authors\":\"Florian Schrenk, Lorenz Lindenthal, Hedda Drexler, Tobias Berger, Raffael Rameshan, Thomas Ruh, Karin Föttinger and Christoph Rameshan\",\"doi\":\"10.1039/D4SU00483C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dry reforming of methane is a promising reaction to convert CO<small><sub>2</sub></small> and combat climate change. However, the reaction is still not feasible in large-scale industrial applications. The thermodynamic need for high temperatures and the potential of carbon deposition leads to high requirements for potential catalyst materials. As shown in previous publications, the Ni-doped perovskite-oxide Nd<small><sub>0.6</sub></small>Ca<small><sub>0.4</sub></small>Fe<small><sub>0.97</sub></small>Ni<small><sub>0.03</sub></small>O<small><sub>3</sub></small> is a potential candidate as it can exsolve highly active Ni nanoparticles on its surface. This study focused on controlling the particle size by varying the reduction temperature. We found the optimal temperature that allows the Ni nanoparticles to exsolve while not yet enabling the formation of deactivating CaCO<small><sub>3</sub></small>. Furthermore, the exsolution process and the behaviour of the phases during the dry reforming of methane were investigated using <em>in situ</em> XRD measurements at the DESY beamline P02.1 at PETRA III in Hamburg. They revealed that the formed deactivated phases would, at high temperatures, form a brownmillerite phase, thus hinting at a potential self-healing mechanism of these materials.</p>\",\"PeriodicalId\":74745,\"journal\":{\"name\":\"RSC sustainability\",\"volume\":\" 11\",\"pages\":\" 3334-3344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00483c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00483c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

甲烷干重整是一种很有前景的转化二氧化碳和应对气候变化的反应。然而,该反应在大规模工业应用中仍不可行。热力学对高温的需求和碳沉积的可能性导致对潜在催化剂材料的高要求。正如之前发表的文章所示,掺杂镍的包晶氧化物 Nd0.6Ca0.4Fe0.97Ni0.03O3 是一种潜在的候选材料,因为它的表面可以溶出高活性的镍纳米颗粒。本研究的重点是通过改变还原温度来控制颗粒大小。我们找到了既能使镍纳米粒子溶出,又不会形成失活 CaCO3 的最佳温度。此外,我们还在汉堡 PETRA III 的 DESY P02.1 光束线使用原位 XRD 测量方法研究了甲烷干重整过程中的溶解过程和相的行为。结果表明,形成的失活相在高温下会形成褐铁矿相,从而暗示了这些材料潜在的自愈机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

How reduction temperature influences the structure of perovskite-oxide catalysts during the dry reforming of methane†

How reduction temperature influences the structure of perovskite-oxide catalysts during the dry reforming of methane†

Dry reforming of methane is a promising reaction to convert CO2 and combat climate change. However, the reaction is still not feasible in large-scale industrial applications. The thermodynamic need for high temperatures and the potential of carbon deposition leads to high requirements for potential catalyst materials. As shown in previous publications, the Ni-doped perovskite-oxide Nd0.6Ca0.4Fe0.97Ni0.03O3 is a potential candidate as it can exsolve highly active Ni nanoparticles on its surface. This study focused on controlling the particle size by varying the reduction temperature. We found the optimal temperature that allows the Ni nanoparticles to exsolve while not yet enabling the formation of deactivating CaCO3. Furthermore, the exsolution process and the behaviour of the phases during the dry reforming of methane were investigated using in situ XRD measurements at the DESY beamline P02.1 at PETRA III in Hamburg. They revealed that the formed deactivated phases would, at high temperatures, form a brownmillerite phase, thus hinting at a potential self-healing mechanism of these materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信