设计高效的类鸟拍翼飞行器:从航空角度看问题。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Dongfu Ma, Bifeng Song, Shijin Gao, Dong Xue, Jianlin Xuan
{"title":"设计高效的类鸟拍翼飞行器:从航空角度看问题。","authors":"Dongfu Ma, Bifeng Song, Shijin Gao, Dong Xue, Jianlin Xuan","doi":"10.1088/1748-3190/ad88c4","DOIUrl":null,"url":null,"abstract":"<p><p>Bird-like flapping-wing aerial vehicles (BFAVs) have attracted significant attention due to their advantages in endurance, range, and load capacity. For a long time, biologists have been studying the enigma of bird flight to understand its mechanism. In contrast, aviation designers focus more on bionic flight systems. This paper presents a comprehensive review of the development of BFAV design. The study aims to provide insights into building a flyable model from the perspective of aviation designers, focusing on the methods in the process of overall design, flapping wing design and drive system design. The review examines the annual progress of flight-capable BFAVs, analyzing changes in prototype size and performance over the years. Additionally, the paper highlights various applications of these vehicles. Furthermore, it discusses the challenges encountered in BFAV design and proposes several possible directions for future research, including perfecting design methods, improving component performance, and promoting practical application. This review will provide essential guidelines and insights for designing BFAVs with higher performance.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing efficient bird-like flapping-wing aerial vehicles: insights from aviation perspective.\",\"authors\":\"Dongfu Ma, Bifeng Song, Shijin Gao, Dong Xue, Jianlin Xuan\",\"doi\":\"10.1088/1748-3190/ad88c4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bird-like flapping-wing aerial vehicles (BFAVs) have attracted significant attention due to their advantages in endurance, range, and load capacity. For a long time, biologists have been studying the enigma of bird flight to understand its mechanism. In contrast, aviation designers focus more on bionic flight systems. This paper presents a comprehensive review of the development of BFAV design. The study aims to provide insights into building a flyable model from the perspective of aviation designers, focusing on the methods in the process of overall design, flapping wing design and drive system design. The review examines the annual progress of flight-capable BFAVs, analyzing changes in prototype size and performance over the years. Additionally, the paper highlights various applications of these vehicles. Furthermore, it discusses the challenges encountered in BFAV design and proposes several possible directions for future research, including perfecting design methods, improving component performance, and promoting practical application. This review will provide essential guidelines and insights for designing BFAVs with higher performance.</p>\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad88c4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad88c4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物启发飞行系统;类鸟拍翼飞行器;拍翼飞行;机翼设计;机构设计;多模式运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing efficient bird-like flapping-wing aerial vehicles: insights from aviation perspective.

Bird-like flapping-wing aerial vehicles (BFAVs) have attracted significant attention due to their advantages in endurance, range, and load capacity. For a long time, biologists have been studying the enigma of bird flight to understand its mechanism. In contrast, aviation designers focus more on bionic flight systems. This paper presents a comprehensive review of the development of BFAV design. The study aims to provide insights into building a flyable model from the perspective of aviation designers, focusing on the methods in the process of overall design, flapping wing design and drive system design. The review examines the annual progress of flight-capable BFAVs, analyzing changes in prototype size and performance over the years. Additionally, the paper highlights various applications of these vehicles. Furthermore, it discusses the challenges encountered in BFAV design and proposes several possible directions for future research, including perfecting design methods, improving component performance, and promoting practical application. This review will provide essential guidelines and insights for designing BFAVs with higher performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信