Yulia Novitskaya, Andreas Schulze-Bonhage, Olivier David, Matthias Dümpelmann
{"title":"基于颅内脑电图的阿尔法至伽马频率范围的定向功能连接反映了人类中颞网络的局部回路。","authors":"Yulia Novitskaya, Andreas Schulze-Bonhage, Olivier David, Matthias Dümpelmann","doi":"10.1007/s10548-024-01084-w","DOIUrl":null,"url":null,"abstract":"<p><p>To date, it is largely unknown how frequency range of neural oscillations measured with EEG is related to functional connectivity. To address this question, we investigated frequency-dependent directed functional connectivity among the structures of mesial and anterior temporal network including amygdala, hippocampus, temporal pole and parahippocampal gyrus in the living human brain. Intracranial EEG recording was obtained from 19 consecutive epilepsy patients with normal anterior mesial temporal MR imaging undergoing intracranial presurgical epilepsy diagnostics with multiple depth electrodes. We assessed intratemporal bidirectional functional connectivity using several causality measures such as Granger causality (GC), directed transfer function (DTF) and partial directed coherence (PDC) in a frequency-specific way. In order to verify the obtained results, we compared the spontaneous functional networks with intratemporal effective connectivity evaluated by means of SPES (single pulse electrical stimulation) method. The overlap with the evoked network was found for the functional connectivity assessed by the GC method, most prominent in the higher frequency bands (alpha, beta and low gamma), yet vanishing in the lower frequencies. Functional connectivity assessed by means of DTF and PCD obtained a similar directionality pattern with the exception of connectivity between hippocampus and parahippocampal gyrus which showed opposite directionality of predominant information flow. Whereas previous connectivity studies reported significant divergence between spontaneous and evoked networks, our data show the role of frequency bands for the consistency of functional and evoked intratemporal directed connectivity. This has implications for the suitability of functional connectivity methods in characterizing local brain circuits.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 1","pages":"10"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496326/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intracranial EEG-Based Directed Functional Connectivity in Alpha to Gamma Frequency Range Reflects Local Circuits of the Human Mesiotemporal Network.\",\"authors\":\"Yulia Novitskaya, Andreas Schulze-Bonhage, Olivier David, Matthias Dümpelmann\",\"doi\":\"10.1007/s10548-024-01084-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To date, it is largely unknown how frequency range of neural oscillations measured with EEG is related to functional connectivity. To address this question, we investigated frequency-dependent directed functional connectivity among the structures of mesial and anterior temporal network including amygdala, hippocampus, temporal pole and parahippocampal gyrus in the living human brain. Intracranial EEG recording was obtained from 19 consecutive epilepsy patients with normal anterior mesial temporal MR imaging undergoing intracranial presurgical epilepsy diagnostics with multiple depth electrodes. We assessed intratemporal bidirectional functional connectivity using several causality measures such as Granger causality (GC), directed transfer function (DTF) and partial directed coherence (PDC) in a frequency-specific way. In order to verify the obtained results, we compared the spontaneous functional networks with intratemporal effective connectivity evaluated by means of SPES (single pulse electrical stimulation) method. The overlap with the evoked network was found for the functional connectivity assessed by the GC method, most prominent in the higher frequency bands (alpha, beta and low gamma), yet vanishing in the lower frequencies. Functional connectivity assessed by means of DTF and PCD obtained a similar directionality pattern with the exception of connectivity between hippocampus and parahippocampal gyrus which showed opposite directionality of predominant information flow. Whereas previous connectivity studies reported significant divergence between spontaneous and evoked networks, our data show the role of frequency bands for the consistency of functional and evoked intratemporal directed connectivity. This has implications for the suitability of functional connectivity methods in characterizing local brain circuits.</p>\",\"PeriodicalId\":55329,\"journal\":{\"name\":\"Brain Topography\",\"volume\":\"38 1\",\"pages\":\"10\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496326/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Topography\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10548-024-01084-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01084-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Intracranial EEG-Based Directed Functional Connectivity in Alpha to Gamma Frequency Range Reflects Local Circuits of the Human Mesiotemporal Network.
To date, it is largely unknown how frequency range of neural oscillations measured with EEG is related to functional connectivity. To address this question, we investigated frequency-dependent directed functional connectivity among the structures of mesial and anterior temporal network including amygdala, hippocampus, temporal pole and parahippocampal gyrus in the living human brain. Intracranial EEG recording was obtained from 19 consecutive epilepsy patients with normal anterior mesial temporal MR imaging undergoing intracranial presurgical epilepsy diagnostics with multiple depth electrodes. We assessed intratemporal bidirectional functional connectivity using several causality measures such as Granger causality (GC), directed transfer function (DTF) and partial directed coherence (PDC) in a frequency-specific way. In order to verify the obtained results, we compared the spontaneous functional networks with intratemporal effective connectivity evaluated by means of SPES (single pulse electrical stimulation) method. The overlap with the evoked network was found for the functional connectivity assessed by the GC method, most prominent in the higher frequency bands (alpha, beta and low gamma), yet vanishing in the lower frequencies. Functional connectivity assessed by means of DTF and PCD obtained a similar directionality pattern with the exception of connectivity between hippocampus and parahippocampal gyrus which showed opposite directionality of predominant information flow. Whereas previous connectivity studies reported significant divergence between spontaneous and evoked networks, our data show the role of frequency bands for the consistency of functional and evoked intratemporal directed connectivity. This has implications for the suitability of functional connectivity methods in characterizing local brain circuits.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.