{"title":"鉴定肺腺癌患者血浆外泌体 lncRNA 和 circRNA 的 ceRNA 调控网络","authors":"Wangyu Zhu, Huafeng Zhang, Liwei Tang, Kexin Fang, Nawa Lin, Yanyan Huang, Yongkui Zhang, Hanbo Le","doi":"10.1111/crj.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Exosomes have been established to be enriched with various long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) that exert various biological effects. However, the lncRNA- and circRNA-mediated coexpression competing endogenous RNA (ceRNA) regulatory network in exosomes derived from the plasma of patients with lung adenocarcinoma (LUAD) remains elusive.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>This study enrolled nine patients with lung adenocarcinoma and three healthy individuals, and the differential expression of messenger RNAs (mRNAs), lncRNAs, and circRNAs was detected using microarray analysis, while microRNAs (miRNAs) were detected through RNA sequencing. Additionally, bioinformatics algorithms were applied to evaluate the lncRNA–miRNA–mRNAs/circRNA–miRNA–mRNA network. Differentially expressed cicRNAs were identified via quantitative reverse transcription polymerase chain reaction (RT-qPCR). A total of 1016 lncRNAs, 1396 circRNAs, 45 miRNAs, and 699 mRNAs were differentially expressed in the plasma exosomes of patients with LUAD compared with healthy controls. Among them, 881 lncRNAs were upregulated and 135 were downregulated, 916 circRNAs were upregulated while 480 were downregulated, 45 miRNAs were upregulated while none were downregulated, and 591 mRNAs were upregulated while 108 were downregulated (<i>p</i> ≤ 0.05, and fold change ≥ 2). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the biological functions of differentially expressed RNAs. Meanwhile, the RNA networks displayed the regulatory relationship between dysregulated RNAs. Finally, RT-qPCR validated that the expression of circ-0033861, circ-0043273, and circ-0011959 was upregulated in the plasma exosome of patients with LUAD compared to healthy controls (<i>p</i> = 0.0327, <i>p</i> = 0.0002, <i>p</i> = 0.0437, respectively).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This study proposed a newly discovered ncRNA–miRNA–mRNA/circRNA–miRNA–mRNA ceRNA network and identified that the expression of circulating circ-0033861, circ-0043273, and circ-0011959 was up-regulated in the plasma exosomes of patients with LUAD, offering valuable insights for exploring the potential function of exosomal noncoding RNA and identifying potential biomarkers for LUAD.</p>\n </section>\n </div>","PeriodicalId":55247,"journal":{"name":"Clinical Respiratory Journal","volume":"18 10","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491303/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of a Plasma Exosomal lncRNA- and circRNA-Based ceRNA Regulatory Network in Patients With Lung Adenocarcinoma\",\"authors\":\"Wangyu Zhu, Huafeng Zhang, Liwei Tang, Kexin Fang, Nawa Lin, Yanyan Huang, Yongkui Zhang, Hanbo Le\",\"doi\":\"10.1111/crj.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Exosomes have been established to be enriched with various long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) that exert various biological effects. However, the lncRNA- and circRNA-mediated coexpression competing endogenous RNA (ceRNA) regulatory network in exosomes derived from the plasma of patients with lung adenocarcinoma (LUAD) remains elusive.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p>This study enrolled nine patients with lung adenocarcinoma and three healthy individuals, and the differential expression of messenger RNAs (mRNAs), lncRNAs, and circRNAs was detected using microarray analysis, while microRNAs (miRNAs) were detected through RNA sequencing. Additionally, bioinformatics algorithms were applied to evaluate the lncRNA–miRNA–mRNAs/circRNA–miRNA–mRNA network. Differentially expressed cicRNAs were identified via quantitative reverse transcription polymerase chain reaction (RT-qPCR). A total of 1016 lncRNAs, 1396 circRNAs, 45 miRNAs, and 699 mRNAs were differentially expressed in the plasma exosomes of patients with LUAD compared with healthy controls. Among them, 881 lncRNAs were upregulated and 135 were downregulated, 916 circRNAs were upregulated while 480 were downregulated, 45 miRNAs were upregulated while none were downregulated, and 591 mRNAs were upregulated while 108 were downregulated (<i>p</i> ≤ 0.05, and fold change ≥ 2). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the biological functions of differentially expressed RNAs. Meanwhile, the RNA networks displayed the regulatory relationship between dysregulated RNAs. Finally, RT-qPCR validated that the expression of circ-0033861, circ-0043273, and circ-0011959 was upregulated in the plasma exosome of patients with LUAD compared to healthy controls (<i>p</i> = 0.0327, <i>p</i> = 0.0002, <i>p</i> = 0.0437, respectively).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>This study proposed a newly discovered ncRNA–miRNA–mRNA/circRNA–miRNA–mRNA ceRNA network and identified that the expression of circulating circ-0033861, circ-0043273, and circ-0011959 was up-regulated in the plasma exosomes of patients with LUAD, offering valuable insights for exploring the potential function of exosomal noncoding RNA and identifying potential biomarkers for LUAD.</p>\\n </section>\\n </div>\",\"PeriodicalId\":55247,\"journal\":{\"name\":\"Clinical Respiratory Journal\",\"volume\":\"18 10\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491303/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Respiratory Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/crj.70026\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/crj.70026","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Identification of a Plasma Exosomal lncRNA- and circRNA-Based ceRNA Regulatory Network in Patients With Lung Adenocarcinoma
Background
Exosomes have been established to be enriched with various long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) that exert various biological effects. However, the lncRNA- and circRNA-mediated coexpression competing endogenous RNA (ceRNA) regulatory network in exosomes derived from the plasma of patients with lung adenocarcinoma (LUAD) remains elusive.
Methods and Results
This study enrolled nine patients with lung adenocarcinoma and three healthy individuals, and the differential expression of messenger RNAs (mRNAs), lncRNAs, and circRNAs was detected using microarray analysis, while microRNAs (miRNAs) were detected through RNA sequencing. Additionally, bioinformatics algorithms were applied to evaluate the lncRNA–miRNA–mRNAs/circRNA–miRNA–mRNA network. Differentially expressed cicRNAs were identified via quantitative reverse transcription polymerase chain reaction (RT-qPCR). A total of 1016 lncRNAs, 1396 circRNAs, 45 miRNAs, and 699 mRNAs were differentially expressed in the plasma exosomes of patients with LUAD compared with healthy controls. Among them, 881 lncRNAs were upregulated and 135 were downregulated, 916 circRNAs were upregulated while 480 were downregulated, 45 miRNAs were upregulated while none were downregulated, and 591 mRNAs were upregulated while 108 were downregulated (p ≤ 0.05, and fold change ≥ 2). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the biological functions of differentially expressed RNAs. Meanwhile, the RNA networks displayed the regulatory relationship between dysregulated RNAs. Finally, RT-qPCR validated that the expression of circ-0033861, circ-0043273, and circ-0011959 was upregulated in the plasma exosome of patients with LUAD compared to healthy controls (p = 0.0327, p = 0.0002, p = 0.0437, respectively).
Conclusion
This study proposed a newly discovered ncRNA–miRNA–mRNA/circRNA–miRNA–mRNA ceRNA network and identified that the expression of circulating circ-0033861, circ-0043273, and circ-0011959 was up-regulated in the plasma exosomes of patients with LUAD, offering valuable insights for exploring the potential function of exosomal noncoding RNA and identifying potential biomarkers for LUAD.
期刊介绍:
Overview
Effective with the 2016 volume, this journal will be published in an online-only format.
Aims and Scope
The Clinical Respiratory Journal (CRJ) provides a forum for clinical research in all areas of respiratory medicine from clinical lung disease to basic research relevant to the clinic.
We publish original research, review articles, case studies, editorials and book reviews in all areas of clinical lung disease including:
Asthma
Allergy
COPD
Non-invasive ventilation
Sleep related breathing disorders
Interstitial lung diseases
Lung cancer
Clinical genetics
Rhinitis
Airway and lung infection
Epidemiology
Pediatrics
CRJ provides a fast-track service for selected Phase II and Phase III trial studies.
Keywords
Clinical Respiratory Journal, respiratory, pulmonary, medicine, clinical, lung disease,
Abstracting and Indexing Information
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Embase (Elsevier)
Health & Medical Collection (ProQuest)
Health Research Premium Collection (ProQuest)
HEED: Health Economic Evaluations Database (Wiley-Blackwell)
Hospital Premium Collection (ProQuest)
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
ProQuest Central (ProQuest)
Science Citation Index Expanded (Clarivate Analytics)
SCOPUS (Elsevier)