Anastasia Pacary, Diane Peurichard, Laurence Vaysse, Paul Monsarrat, Clémence Bolut, Adeline Girel, Christophe Guissard, Anne Lorsignol, Valérie Planat-Benard, Jenny Paupert, Marielle Ousset, Louis Casteilla
{"title":"一个计算模型揭示了纤维交联的早期瞬时减少,从而开启了成体再生。","authors":"Anastasia Pacary, Diane Peurichard, Laurence Vaysse, Paul Monsarrat, Clémence Bolut, Adeline Girel, Christophe Guissard, Anne Lorsignol, Valérie Planat-Benard, Jenny Paupert, Marielle Ousset, Louis Casteilla","doi":"10.1038/s41536-024-00373-z","DOIUrl":null,"url":null,"abstract":"<p><p>The decline in regeneration efficiency after birth in mammals is a significant roadblock for regenerative medicine in tissue repair. We previously developed a computational agent based-model (ABM) that recapitulates mechanical interactions between cells and the extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. Time calibration alongside a parameter sensitivity analysis of the model suggested that an early and transient decrease in ECM cross-linking guides tissue repair toward regeneration. Consistent with the computational model, transient inhibition or stimulation of fiber cross-linking for the first six days after subcutaneous adipose tissue (AT) resection in adult mice led to regenerative or scar healing, respectively. Therefore, this work positions the computational model as a predictive tool for tissue regeneration that with further development will behave as a digital twin of our in vivo model. In addition, it opens new therapeutic approaches targeting ECM cross-linking to induce tissue regeneration in adult mammals.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"9 1","pages":"29"},"PeriodicalIF":6.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480365/pdf/","citationCount":"0","resultStr":"{\"title\":\"A computational model reveals an early transient decrease in fiber cross-linking that unlocks adult regeneration.\",\"authors\":\"Anastasia Pacary, Diane Peurichard, Laurence Vaysse, Paul Monsarrat, Clémence Bolut, Adeline Girel, Christophe Guissard, Anne Lorsignol, Valérie Planat-Benard, Jenny Paupert, Marielle Ousset, Louis Casteilla\",\"doi\":\"10.1038/s41536-024-00373-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The decline in regeneration efficiency after birth in mammals is a significant roadblock for regenerative medicine in tissue repair. We previously developed a computational agent based-model (ABM) that recapitulates mechanical interactions between cells and the extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. Time calibration alongside a parameter sensitivity analysis of the model suggested that an early and transient decrease in ECM cross-linking guides tissue repair toward regeneration. Consistent with the computational model, transient inhibition or stimulation of fiber cross-linking for the first six days after subcutaneous adipose tissue (AT) resection in adult mice led to regenerative or scar healing, respectively. Therefore, this work positions the computational model as a predictive tool for tissue regeneration that with further development will behave as a digital twin of our in vivo model. In addition, it opens new therapeutic approaches targeting ECM cross-linking to induce tissue regeneration in adult mammals.</p>\",\"PeriodicalId\":54236,\"journal\":{\"name\":\"npj Regenerative Medicine\",\"volume\":\"9 1\",\"pages\":\"29\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480365/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Regenerative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41536-024-00373-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-024-00373-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
A computational model reveals an early transient decrease in fiber cross-linking that unlocks adult regeneration.
The decline in regeneration efficiency after birth in mammals is a significant roadblock for regenerative medicine in tissue repair. We previously developed a computational agent based-model (ABM) that recapitulates mechanical interactions between cells and the extracellular-matrix (ECM), to investigate key drivers of tissue repair in adults. Time calibration alongside a parameter sensitivity analysis of the model suggested that an early and transient decrease in ECM cross-linking guides tissue repair toward regeneration. Consistent with the computational model, transient inhibition or stimulation of fiber cross-linking for the first six days after subcutaneous adipose tissue (AT) resection in adult mice led to regenerative or scar healing, respectively. Therefore, this work positions the computational model as a predictive tool for tissue regeneration that with further development will behave as a digital twin of our in vivo model. In addition, it opens new therapeutic approaches targeting ECM cross-linking to induce tissue regeneration in adult mammals.
期刊介绍:
Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.