{"title":"赖氨酸 204 对人类 LAT1 转运体的反转运功能至关重要。","authors":"Mariafrancesca Scalise , Raffaella Scanga , Lara Console , Michele Galluccio , Lorena Pochini , Cesare Indiveri","doi":"10.1016/j.bbabio.2024.149520","DOIUrl":null,"url":null,"abstract":"<div><div>LAT1 (SLC7A5) catalyzes an antiport reaction of amino acids with specificity towards the essential ones. It is mainly expressed at the Blood Brain Barrier and placenta barriers, but it becomes over-expressed in virtually all human cancers even if originating from tissues with lower expression levels. The antiport reaction of LAT1 is crucial at the BBB since its inherited loss causes Autism Spectrum Disorder. We have investigated the possible molecular determinant of the antiport by site-directed mutagenesis, <em>in vitro</em> transport assay and computational analysis. Previous data indicated that mutation of K204 impairs, but does not knock-out LAT1 functionality. We have investigated the activity changes in the K204Q mutant by following the transport of [<sup>3</sup>H]-histidine, one of the major substrates, in proteoliposomes harbouring the WT or K204Q. In the mutant, the [<sup>3</sup>H]-histidine uptake and efflux are not more stimulated by the counter-substrate as they occur in the WT. Moreover, the mutation strongly decreases the substrate affinity and alters the pH dependence of K204Q. Molecular Dynamics analysis correlates well with the experimental data since it shows that substrate prematurely escapes the binding site. In addition, the K204Q shows a strongly increased mobility in those regions, transmembrane domains and random coils, involved in the transport cycle. The identified Lys residue could be responsible of the same phenomenon in those members of the SLC7 family, described as antiporters, in which it is conserved.</div></div>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":"1866 1","pages":"Article 149520"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lysine 204 is crucial for the antiport function of the human LAT1 transporter\",\"authors\":\"Mariafrancesca Scalise , Raffaella Scanga , Lara Console , Michele Galluccio , Lorena Pochini , Cesare Indiveri\",\"doi\":\"10.1016/j.bbabio.2024.149520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>LAT1 (SLC7A5) catalyzes an antiport reaction of amino acids with specificity towards the essential ones. It is mainly expressed at the Blood Brain Barrier and placenta barriers, but it becomes over-expressed in virtually all human cancers even if originating from tissues with lower expression levels. The antiport reaction of LAT1 is crucial at the BBB since its inherited loss causes Autism Spectrum Disorder. We have investigated the possible molecular determinant of the antiport by site-directed mutagenesis, <em>in vitro</em> transport assay and computational analysis. Previous data indicated that mutation of K204 impairs, but does not knock-out LAT1 functionality. We have investigated the activity changes in the K204Q mutant by following the transport of [<sup>3</sup>H]-histidine, one of the major substrates, in proteoliposomes harbouring the WT or K204Q. In the mutant, the [<sup>3</sup>H]-histidine uptake and efflux are not more stimulated by the counter-substrate as they occur in the WT. Moreover, the mutation strongly decreases the substrate affinity and alters the pH dependence of K204Q. Molecular Dynamics analysis correlates well with the experimental data since it shows that substrate prematurely escapes the binding site. In addition, the K204Q shows a strongly increased mobility in those regions, transmembrane domains and random coils, involved in the transport cycle. The identified Lys residue could be responsible of the same phenomenon in those members of the SLC7 family, described as antiporters, in which it is conserved.</div></div>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":\"1866 1\",\"pages\":\"Article 149520\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005272824004900\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005272824004900","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Lysine 204 is crucial for the antiport function of the human LAT1 transporter
LAT1 (SLC7A5) catalyzes an antiport reaction of amino acids with specificity towards the essential ones. It is mainly expressed at the Blood Brain Barrier and placenta barriers, but it becomes over-expressed in virtually all human cancers even if originating from tissues with lower expression levels. The antiport reaction of LAT1 is crucial at the BBB since its inherited loss causes Autism Spectrum Disorder. We have investigated the possible molecular determinant of the antiport by site-directed mutagenesis, in vitro transport assay and computational analysis. Previous data indicated that mutation of K204 impairs, but does not knock-out LAT1 functionality. We have investigated the activity changes in the K204Q mutant by following the transport of [3H]-histidine, one of the major substrates, in proteoliposomes harbouring the WT or K204Q. In the mutant, the [3H]-histidine uptake and efflux are not more stimulated by the counter-substrate as they occur in the WT. Moreover, the mutation strongly decreases the substrate affinity and alters the pH dependence of K204Q. Molecular Dynamics analysis correlates well with the experimental data since it shows that substrate prematurely escapes the binding site. In addition, the K204Q shows a strongly increased mobility in those regions, transmembrane domains and random coils, involved in the transport cycle. The identified Lys residue could be responsible of the same phenomenon in those members of the SLC7 family, described as antiporters, in which it is conserved.
期刊介绍:
BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.