{"title":"注射肉毒杆菌神经毒素的内阔肌肌内神经分布:应用于痉挛。","authors":"Kyu-Ho Yi, Hyewon Hu, Sung-Oh Hwang, Haeryun Ahn, Ji-Hyun Lee, Hyung-Jin Lee","doi":"10.1007/s00276-024-03482-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A comprehensive understanding of neural distribution within the vastus medialis is crucial for the effective administration of botulinum neurotoxin injections to manage spasticity. The aim of this study was to develop an anatomically informed approach to guide the administration of botulinum neurotoxin injections into the vastus medialis muscle.</p><p><strong>Methods: </strong>Using a modified Sihler's method, we examined the vastus medialis muscles (20 specimens) to delineate the distribution of nerves relative to a transverse line extending from the anterior superior iliac spine to the base of patella. The vastus medialis muscle was divided into 10 areas from top to bottom. Then, using two fresh cadavers, ultrasonography-guided injections were performed based on the distribution of nerves within the vastus medialis. Each specimen was subsequently dissected to verify if the dye was accurately directed to the most densely innervated regions of the vastus medialis and to assess the precision of the injections.</p><p><strong>Results: </strong>The intramuscular nerve distribution within the vastus medialis muscle showed distinct patterns, particularly in areas between 6 and 9. Four injections were successfully administered on each side, targeting the regions between 6 and 9 of the vastus medialis. Upon dissection of the cadavers, the dye was found to be distributed along the muscle fiber.</p><p><strong>Conclusion: </strong>We recommend targeting botulinum neurotoxin injections toward regions displaying a prominent nerve distribution, specifically focusing on areas between 6 and 9. By adhering to these guidelines, clinicians can minimize doses and mitigate potential adverse effects, such as gait disturbances, antibody development, and bruising, resulting from multiple injections. Furthermore, these findings can be incorporated into electromyography practices.</p>","PeriodicalId":49461,"journal":{"name":"Surgical and Radiologic Anatomy","volume":" ","pages":"2067-2073"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intramuscular neural distribution of the vastus medialis for botulinum neurotoxin injection: application to spasticity.\",\"authors\":\"Kyu-Ho Yi, Hyewon Hu, Sung-Oh Hwang, Haeryun Ahn, Ji-Hyun Lee, Hyung-Jin Lee\",\"doi\":\"10.1007/s00276-024-03482-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>A comprehensive understanding of neural distribution within the vastus medialis is crucial for the effective administration of botulinum neurotoxin injections to manage spasticity. The aim of this study was to develop an anatomically informed approach to guide the administration of botulinum neurotoxin injections into the vastus medialis muscle.</p><p><strong>Methods: </strong>Using a modified Sihler's method, we examined the vastus medialis muscles (20 specimens) to delineate the distribution of nerves relative to a transverse line extending from the anterior superior iliac spine to the base of patella. The vastus medialis muscle was divided into 10 areas from top to bottom. Then, using two fresh cadavers, ultrasonography-guided injections were performed based on the distribution of nerves within the vastus medialis. Each specimen was subsequently dissected to verify if the dye was accurately directed to the most densely innervated regions of the vastus medialis and to assess the precision of the injections.</p><p><strong>Results: </strong>The intramuscular nerve distribution within the vastus medialis muscle showed distinct patterns, particularly in areas between 6 and 9. Four injections were successfully administered on each side, targeting the regions between 6 and 9 of the vastus medialis. Upon dissection of the cadavers, the dye was found to be distributed along the muscle fiber.</p><p><strong>Conclusion: </strong>We recommend targeting botulinum neurotoxin injections toward regions displaying a prominent nerve distribution, specifically focusing on areas between 6 and 9. By adhering to these guidelines, clinicians can minimize doses and mitigate potential adverse effects, such as gait disturbances, antibody development, and bruising, resulting from multiple injections. Furthermore, these findings can be incorporated into electromyography practices.</p>\",\"PeriodicalId\":49461,\"journal\":{\"name\":\"Surgical and Radiologic Anatomy\",\"volume\":\" \",\"pages\":\"2067-2073\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surgical and Radiologic Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00276-024-03482-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical and Radiologic Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00276-024-03482-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Intramuscular neural distribution of the vastus medialis for botulinum neurotoxin injection: application to spasticity.
Purpose: A comprehensive understanding of neural distribution within the vastus medialis is crucial for the effective administration of botulinum neurotoxin injections to manage spasticity. The aim of this study was to develop an anatomically informed approach to guide the administration of botulinum neurotoxin injections into the vastus medialis muscle.
Methods: Using a modified Sihler's method, we examined the vastus medialis muscles (20 specimens) to delineate the distribution of nerves relative to a transverse line extending from the anterior superior iliac spine to the base of patella. The vastus medialis muscle was divided into 10 areas from top to bottom. Then, using two fresh cadavers, ultrasonography-guided injections were performed based on the distribution of nerves within the vastus medialis. Each specimen was subsequently dissected to verify if the dye was accurately directed to the most densely innervated regions of the vastus medialis and to assess the precision of the injections.
Results: The intramuscular nerve distribution within the vastus medialis muscle showed distinct patterns, particularly in areas between 6 and 9. Four injections were successfully administered on each side, targeting the regions between 6 and 9 of the vastus medialis. Upon dissection of the cadavers, the dye was found to be distributed along the muscle fiber.
Conclusion: We recommend targeting botulinum neurotoxin injections toward regions displaying a prominent nerve distribution, specifically focusing on areas between 6 and 9. By adhering to these guidelines, clinicians can minimize doses and mitigate potential adverse effects, such as gait disturbances, antibody development, and bruising, resulting from multiple injections. Furthermore, these findings can be incorporated into electromyography practices.
期刊介绍:
Anatomy is a morphological science which cannot fail to interest the clinician. The practical application of anatomical research to clinical problems necessitates special adaptation and selectivity in choosing from numerous international works. Although there is a tendency to believe that meaningful advances in anatomy are unlikely, constant revision is necessary. Surgical and Radiologic Anatomy, the first international journal of Clinical anatomy has been created in this spirit.
Its goal is to serve clinicians, regardless of speciality-physicians, surgeons, radiologists or other specialists-as an indispensable aid with which they can improve their knowledge of anatomy. Each issue includes: Original papers, review articles, articles on the anatomical bases of medical, surgical and radiological techniques, articles of normal radiologic anatomy, brief reviews of anatomical publications of clinical interest.
Particular attention is given to high quality illustrations, which are indispensable for a better understanding of anatomical problems.
Surgical and Radiologic Anatomy is a journal written by anatomists for clinicians with a special interest in anatomy.