{"title":"鉴定甲状腺乳头状癌的潜在生物标记物。","authors":"Sabire Kilicarslan, Meliha Merve Hiz-Cicekliyurt","doi":"10.1007/s12020-024-04068-9","DOIUrl":null,"url":null,"abstract":"<p><p>Papillary thyroid cancer (PTC) is the predominant form of malignant tumor affecting the thyroid gland.</p><p><strong>Aim: </strong>This study aimed to identify candidate biomarkers for papillary thyroid carcinoma using an integrative analysis of bioinformatics and machine learning (ML).</p><p><strong>Material and method: </strong>The PTC datasets GSE6004, GSE3467, and GSE33630 (species: Homo sapiens) were downloaded from NCBI and analyzed using the limma package to obtain DEGs. Once DEGs were identified, GO and KEGG enrichment analyses were performed as the first step in the bioinformatics process. Subsequently, a protein-protein interaction (PPI) network was constructed according to the common genes in bioinformatics and machine learning using STRING to elucidate the important genes involved in PTC pathogenesis. In machine learning, finding genes entails feature selection to identify the key genes that distinguish biological states. Hybrid feature selection will be used for this. In the second step, the original data sets were preprocessed to detect and correct missing and noisy data; after that, all data were merged. Following performing Linear and Discriminative Hybrid Feature Selection (LDHFS) on the processed dataset, machine learning algorithms such as Random Forest (RF), Naive Bayes (NB), and Support Vector Machines (SVM) are utilized.</p><p><strong>Results: </strong>Bioinformatics and machine learning analyses indicate that the genes RXRG, CDH2, ETV5, QPCT, LRP4, FN1, and LPAR5 are integral to the progression of thyroid cancer. This study attained the highest accuracy utilizing the RF algorithm, achieving an accuracy rate of 94.62%, a Kappa value of 91.36%, and an AUC value of 96.13%. These results offer additional evidence and confirmation for the genetic alterations of these genes. These findings may accelerate the development of prospective therapeutic and diagnostic methods in future research.</p><p><strong>Conclusions: </strong>Bioinformatics and machine learning techniques identified the common genes \"RXRG, CDH2, ETV5, QPCT, LRP4, FN1, and LPAR5\" as PTC biomarkers, providing novel reference markers for the diagnosis and treatment of PTC patients. The model is anticipated to possess significant predictive value and assist in the early diagnosis and screening of clinical PTC. These insights enhance the field of PTC management and offer guidance for future research.</p>","PeriodicalId":49211,"journal":{"name":"Endocrine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of potential biomarkers of papillary thyroid carcinoma.\",\"authors\":\"Sabire Kilicarslan, Meliha Merve Hiz-Cicekliyurt\",\"doi\":\"10.1007/s12020-024-04068-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Papillary thyroid cancer (PTC) is the predominant form of malignant tumor affecting the thyroid gland.</p><p><strong>Aim: </strong>This study aimed to identify candidate biomarkers for papillary thyroid carcinoma using an integrative analysis of bioinformatics and machine learning (ML).</p><p><strong>Material and method: </strong>The PTC datasets GSE6004, GSE3467, and GSE33630 (species: Homo sapiens) were downloaded from NCBI and analyzed using the limma package to obtain DEGs. Once DEGs were identified, GO and KEGG enrichment analyses were performed as the first step in the bioinformatics process. Subsequently, a protein-protein interaction (PPI) network was constructed according to the common genes in bioinformatics and machine learning using STRING to elucidate the important genes involved in PTC pathogenesis. In machine learning, finding genes entails feature selection to identify the key genes that distinguish biological states. Hybrid feature selection will be used for this. In the second step, the original data sets were preprocessed to detect and correct missing and noisy data; after that, all data were merged. Following performing Linear and Discriminative Hybrid Feature Selection (LDHFS) on the processed dataset, machine learning algorithms such as Random Forest (RF), Naive Bayes (NB), and Support Vector Machines (SVM) are utilized.</p><p><strong>Results: </strong>Bioinformatics and machine learning analyses indicate that the genes RXRG, CDH2, ETV5, QPCT, LRP4, FN1, and LPAR5 are integral to the progression of thyroid cancer. This study attained the highest accuracy utilizing the RF algorithm, achieving an accuracy rate of 94.62%, a Kappa value of 91.36%, and an AUC value of 96.13%. These results offer additional evidence and confirmation for the genetic alterations of these genes. These findings may accelerate the development of prospective therapeutic and diagnostic methods in future research.</p><p><strong>Conclusions: </strong>Bioinformatics and machine learning techniques identified the common genes \\\"RXRG, CDH2, ETV5, QPCT, LRP4, FN1, and LPAR5\\\" as PTC biomarkers, providing novel reference markers for the diagnosis and treatment of PTC patients. The model is anticipated to possess significant predictive value and assist in the early diagnosis and screening of clinical PTC. These insights enhance the field of PTC management and offer guidance for future research.</p>\",\"PeriodicalId\":49211,\"journal\":{\"name\":\"Endocrine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12020-024-04068-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12020-024-04068-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Identification of potential biomarkers of papillary thyroid carcinoma.
Papillary thyroid cancer (PTC) is the predominant form of malignant tumor affecting the thyroid gland.
Aim: This study aimed to identify candidate biomarkers for papillary thyroid carcinoma using an integrative analysis of bioinformatics and machine learning (ML).
Material and method: The PTC datasets GSE6004, GSE3467, and GSE33630 (species: Homo sapiens) were downloaded from NCBI and analyzed using the limma package to obtain DEGs. Once DEGs were identified, GO and KEGG enrichment analyses were performed as the first step in the bioinformatics process. Subsequently, a protein-protein interaction (PPI) network was constructed according to the common genes in bioinformatics and machine learning using STRING to elucidate the important genes involved in PTC pathogenesis. In machine learning, finding genes entails feature selection to identify the key genes that distinguish biological states. Hybrid feature selection will be used for this. In the second step, the original data sets were preprocessed to detect and correct missing and noisy data; after that, all data were merged. Following performing Linear and Discriminative Hybrid Feature Selection (LDHFS) on the processed dataset, machine learning algorithms such as Random Forest (RF), Naive Bayes (NB), and Support Vector Machines (SVM) are utilized.
Results: Bioinformatics and machine learning analyses indicate that the genes RXRG, CDH2, ETV5, QPCT, LRP4, FN1, and LPAR5 are integral to the progression of thyroid cancer. This study attained the highest accuracy utilizing the RF algorithm, achieving an accuracy rate of 94.62%, a Kappa value of 91.36%, and an AUC value of 96.13%. These results offer additional evidence and confirmation for the genetic alterations of these genes. These findings may accelerate the development of prospective therapeutic and diagnostic methods in future research.
Conclusions: Bioinformatics and machine learning techniques identified the common genes "RXRG, CDH2, ETV5, QPCT, LRP4, FN1, and LPAR5" as PTC biomarkers, providing novel reference markers for the diagnosis and treatment of PTC patients. The model is anticipated to possess significant predictive value and assist in the early diagnosis and screening of clinical PTC. These insights enhance the field of PTC management and offer guidance for future research.
期刊介绍:
Well-established as a major journal in today’s rapidly advancing experimental and clinical research areas, Endocrine publishes original articles devoted to basic (including molecular, cellular and physiological studies), translational and clinical research in all the different fields of endocrinology and metabolism. Articles will be accepted based on peer-reviews, priority, and editorial decision. Invited reviews, mini-reviews and viewpoints on relevant pathophysiological and clinical topics, as well as Editorials on articles appearing in the Journal, are published. Unsolicited Editorials will be evaluated by the editorial team. Outcomes of scientific meetings, as well as guidelines and position statements, may be submitted. The Journal also considers special feature articles in the field of endocrine genetics and epigenetics, as well as articles devoted to novel methods and techniques in endocrinology.
Endocrine covers controversial, clinical endocrine issues. Meta-analyses on endocrine and metabolic topics are also accepted. Descriptions of single clinical cases and/or small patients studies are not published unless of exceptional interest. However, reports of novel imaging studies and endocrine side effects in single patients may be considered. Research letters and letters to the editor related or unrelated to recently published articles can be submitted.
Endocrine covers leading topics in endocrinology such as neuroendocrinology, pituitary and hypothalamic peptides, thyroid physiological and clinical aspects, bone and mineral metabolism and osteoporosis, obesity, lipid and energy metabolism and food intake control, insulin, Type 1 and Type 2 diabetes, hormones of male and female reproduction, adrenal diseases pediatric and geriatric endocrinology, endocrine hypertension and endocrine oncology.