{"title":"评估镰状细胞性贫血发病机制中的基因和分子途径:生物信息学分析与未来展望》。","authors":"Reza Maddah, Sareh Etemad, Bahareh Shateri Amiri, Hajarossadat Ghaderi, Hamidreza Zarei, Ferdos Faghihkhorasani, Hadi Rezaeeyan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sickle cell disease (SCD) is one of the hematological disorders characterized by a defect in the structure and function of globin chains. Hereditary factors play an important role in the pathogenesis of SCD. We aimed to investigate the genes and pathways related to the pathogenesis of SCD.</p><p><strong>Methods: </strong>Microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. LIMMA package of R-software was used to detect UP and Down regulations between SCD and control subjects. Enrichment analysis and Protein-protein interaction (PPI) networks were performed using GeneCodis4 software and GeneMANIA database, respectively. PrognoScan database was used to evaluate the relationship between the hub genes and patients' survival.</p><p><strong>Results: </strong>Overall, 447 DEGs were identified in SCD patients compared to control subjects. Out of 447 DEGs, 345 genes were up-regulated and 102 genes were down-regulated. Effective hub genes in SCD pathogenesis include <i>SLC4A1, DTL, EPB42, SNCA,</i> and <i>TOP2A</i>. In addition, hub genes had a high diagnostic value.</p><p><strong>Conclusion: </strong>Evaluation of hub genes in SCD can be used as a diagnostic panel to detect high-risk patients. In addition, by identifying the UP and Down stream pathways, treatment strategies in the monitoring and treatment of patients can be designed.</p>","PeriodicalId":49173,"journal":{"name":"Iranian Journal of Public Health","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488559/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Genes and Molecular Pathways Involved in Pathogenesis of Sickle Cell Anemia: A Bioinformatics Analysis and Future Perspective.\",\"authors\":\"Reza Maddah, Sareh Etemad, Bahareh Shateri Amiri, Hajarossadat Ghaderi, Hamidreza Zarei, Ferdos Faghihkhorasani, Hadi Rezaeeyan\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sickle cell disease (SCD) is one of the hematological disorders characterized by a defect in the structure and function of globin chains. Hereditary factors play an important role in the pathogenesis of SCD. We aimed to investigate the genes and pathways related to the pathogenesis of SCD.</p><p><strong>Methods: </strong>Microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. LIMMA package of R-software was used to detect UP and Down regulations between SCD and control subjects. Enrichment analysis and Protein-protein interaction (PPI) networks were performed using GeneCodis4 software and GeneMANIA database, respectively. PrognoScan database was used to evaluate the relationship between the hub genes and patients' survival.</p><p><strong>Results: </strong>Overall, 447 DEGs were identified in SCD patients compared to control subjects. Out of 447 DEGs, 345 genes were up-regulated and 102 genes were down-regulated. Effective hub genes in SCD pathogenesis include <i>SLC4A1, DTL, EPB42, SNCA,</i> and <i>TOP2A</i>. In addition, hub genes had a high diagnostic value.</p><p><strong>Conclusion: </strong>Evaluation of hub genes in SCD can be used as a diagnostic panel to detect high-risk patients. In addition, by identifying the UP and Down stream pathways, treatment strategies in the monitoring and treatment of patients can be designed.</p>\",\"PeriodicalId\":49173,\"journal\":{\"name\":\"Iranian Journal of Public Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488559/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Public Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Public Health","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Evaluation of Genes and Molecular Pathways Involved in Pathogenesis of Sickle Cell Anemia: A Bioinformatics Analysis and Future Perspective.
Background: Sickle cell disease (SCD) is one of the hematological disorders characterized by a defect in the structure and function of globin chains. Hereditary factors play an important role in the pathogenesis of SCD. We aimed to investigate the genes and pathways related to the pathogenesis of SCD.
Methods: Microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. LIMMA package of R-software was used to detect UP and Down regulations between SCD and control subjects. Enrichment analysis and Protein-protein interaction (PPI) networks were performed using GeneCodis4 software and GeneMANIA database, respectively. PrognoScan database was used to evaluate the relationship between the hub genes and patients' survival.
Results: Overall, 447 DEGs were identified in SCD patients compared to control subjects. Out of 447 DEGs, 345 genes were up-regulated and 102 genes were down-regulated. Effective hub genes in SCD pathogenesis include SLC4A1, DTL, EPB42, SNCA, and TOP2A. In addition, hub genes had a high diagnostic value.
Conclusion: Evaluation of hub genes in SCD can be used as a diagnostic panel to detect high-risk patients. In addition, by identifying the UP and Down stream pathways, treatment strategies in the monitoring and treatment of patients can be designed.
期刊介绍:
Iranian Journal of Public Health has been continuously published since 1971, as the only Journal in all health domains, with wide distribution (including WHO in Geneva and Cairo) in two languages (English and Persian). From 2001 issue, the Journal is published only in English language. During the last 41 years more than 2000 scientific research papers, results of health activities, surveys and services, have been published in this Journal. To meet the increasing demand of respected researchers, as of January 2012, the Journal is published monthly. I wish this will assist to promote the level of global knowledge. The main topics that the Journal would welcome are: Bioethics, Disaster and Health, Entomology, Epidemiology, Health and Environment, Health Economics, Health Services, Immunology, Medical Genetics, Mental Health, Microbiology, Nutrition and Food Safety, Occupational Health, Oral Health. We would be very delighted to receive your Original papers, Review Articles, Short communications, Case reports and Scientific Letters to the Editor on the above mentioned research areas.