{"title":"MiR-125b-5p 通过靶向 BAK1 抑制 TGFβ1 介导的上皮-间充质转化,从而减轻肺纤维化。","authors":"Shuang Zhou, Wenzhao Cheng, Yifei Liu, Hongzhi Gao, Liying Yu, Yiming Zeng","doi":"10.1186/s12931-024-03011-w","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the role and potential mechanisms of microRNA-125b-5p (miR-125b-5p) in pulmonary fibrosis (PF). PF is a typical outcome of many chronic lung diseases, with poor prognosis and the lack of appropriate medical treatment because PF's molecular mechanisms remain poorly understood. In this study, using in vitro and in vivo analyses, we find that miR-125b-5p is likely a potent regulator of lung fibrosis. The findings reveal that, on the one hand, miR-125b-5p not only specifically decreases in the epithelial-mesenchymal transition (EMT) of lung epithelial cells, but also shows a downregulation trend in the lung tissues of mice with PF. On the other hand, overexpression of miR-125b-5p on the cellular and animal levels downregulates EMT and fibrotic phenotypes, respectively. To clarify the molecular mechanism of the \"therapeutic\" effect of miR-125b-5p, we use the target prediction tool combined with a dual luciferase assay and complete a rescue experiment by constructing the overexpression vector of the target gene Bcl-2 homologous antagonist/ killer (BAK1), thus confirming that miR-125b-5p can effectively inhibit EMT and fibrosis process by targeting BAK1 gene. MiR-125b-5p inhibits the EMT in lung epithelial cells by negatively regulating BAK1, while overexpression of miR-125b-5p can alleviate lung fibrosis. The findings suggest that MiR-125b-5p/BAK1 can serve as a potential treatment target for PF.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491022/pdf/","citationCount":"0","resultStr":"{\"title\":\"MiR-125b-5p alleviates pulmonary fibrosis by inhibiting TGFβ1-mediated epithelial-mesenchymal transition via targeting BAK1.\",\"authors\":\"Shuang Zhou, Wenzhao Cheng, Yifei Liu, Hongzhi Gao, Liying Yu, Yiming Zeng\",\"doi\":\"10.1186/s12931-024-03011-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the role and potential mechanisms of microRNA-125b-5p (miR-125b-5p) in pulmonary fibrosis (PF). PF is a typical outcome of many chronic lung diseases, with poor prognosis and the lack of appropriate medical treatment because PF's molecular mechanisms remain poorly understood. In this study, using in vitro and in vivo analyses, we find that miR-125b-5p is likely a potent regulator of lung fibrosis. The findings reveal that, on the one hand, miR-125b-5p not only specifically decreases in the epithelial-mesenchymal transition (EMT) of lung epithelial cells, but also shows a downregulation trend in the lung tissues of mice with PF. On the other hand, overexpression of miR-125b-5p on the cellular and animal levels downregulates EMT and fibrotic phenotypes, respectively. To clarify the molecular mechanism of the \\\"therapeutic\\\" effect of miR-125b-5p, we use the target prediction tool combined with a dual luciferase assay and complete a rescue experiment by constructing the overexpression vector of the target gene Bcl-2 homologous antagonist/ killer (BAK1), thus confirming that miR-125b-5p can effectively inhibit EMT and fibrosis process by targeting BAK1 gene. MiR-125b-5p inhibits the EMT in lung epithelial cells by negatively regulating BAK1, while overexpression of miR-125b-5p can alleviate lung fibrosis. The findings suggest that MiR-125b-5p/BAK1 can serve as a potential treatment target for PF.</p>\",\"PeriodicalId\":49131,\"journal\":{\"name\":\"Respiratory Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11491022/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12931-024-03011-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-03011-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
MiR-125b-5p alleviates pulmonary fibrosis by inhibiting TGFβ1-mediated epithelial-mesenchymal transition via targeting BAK1.
This study explores the role and potential mechanisms of microRNA-125b-5p (miR-125b-5p) in pulmonary fibrosis (PF). PF is a typical outcome of many chronic lung diseases, with poor prognosis and the lack of appropriate medical treatment because PF's molecular mechanisms remain poorly understood. In this study, using in vitro and in vivo analyses, we find that miR-125b-5p is likely a potent regulator of lung fibrosis. The findings reveal that, on the one hand, miR-125b-5p not only specifically decreases in the epithelial-mesenchymal transition (EMT) of lung epithelial cells, but also shows a downregulation trend in the lung tissues of mice with PF. On the other hand, overexpression of miR-125b-5p on the cellular and animal levels downregulates EMT and fibrotic phenotypes, respectively. To clarify the molecular mechanism of the "therapeutic" effect of miR-125b-5p, we use the target prediction tool combined with a dual luciferase assay and complete a rescue experiment by constructing the overexpression vector of the target gene Bcl-2 homologous antagonist/ killer (BAK1), thus confirming that miR-125b-5p can effectively inhibit EMT and fibrosis process by targeting BAK1 gene. MiR-125b-5p inhibits the EMT in lung epithelial cells by negatively regulating BAK1, while overexpression of miR-125b-5p can alleviate lung fibrosis. The findings suggest that MiR-125b-5p/BAK1 can serve as a potential treatment target for PF.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.