Yuanyuan Liu, Qiling Yin, Bin Liu, Zheng Lu, Meijun Liu, Ling Meng, Chao He, Jin Chang
{"title":"鱼腥草素能防止气道平滑肌细胞的表型转换,从而减少卵清蛋白引发的气道重塑。","authors":"Yuanyuan Liu, Qiling Yin, Bin Liu, Zheng Lu, Meijun Liu, Ling Meng, Chao He, Jin Chang","doi":"10.1186/s12931-024-03005-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The transformation of airway smooth muscle cells (ASMCs) from a quiescent phenotype to a hypersecretory and hypercontractile phenotype is a defining feature of asthmatic airway remodeling. Fisetin, a flavonoid compound, possesses anti-inflammatory characteristics in asthma; yet, its impact on airway remodeling and ASMCs phenotype transition has not been investigated.</p><p><strong>Objectives: </strong>This research seeked to assess the impact of fisetin on ovalbumin (OVA) induced asthmatic airway remodeling and ASMCs phenotype transition, and clarify the mechanisms through network pharmacology predictions as well as in vivo and in vitro validation.</p><p><strong>Methods: </strong>First, a fisetin-asthma-ASMCs network was constructed to identify potential targets. Subsequently, cellular and animal studies were carried out to examine the inhibitory effects of fisetin on airway remodeling in asthmatic mice, and to detemine how fisetin impacts the phenotypic transition of ASMCs.</p><p><strong>Results: </strong>Network analysis indicated that fisetin might affect asthma via mediating the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) pathway. Intraperitoneal administration of fisetin in vivo reduced airway inflammation and remodeling, as shown by reduced inflammatory cells, decreased T helper type 2 (Th2) cytokine release, diminished collagen accumulation, mitigated airway smooth muscle thickening, and decreased expression of osteopontin (OPN), collagen-I and α-smooth muscle actin (α-SMA). Moreover, fisetin suppressed the PI3K/AKT pathway in asthmatic lung tissue. According to the in vitro data, fisetin downregulated the expression of the synthetic phenotypic proteins OPN and collagen-I, contractile protein α-SMA, and inhibited cellular migration, potentially through the PI3K/AKT pathway.</p><p><strong>Conclusion: </strong>These results suggest that fisetin inhibits airway remodeling in asthma by regulating ASMCs phenotypic shift, emphasizing that fisetin is a promising candidate for the treatment of airway smooth muscle remodeling.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"25 1","pages":"370"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479573/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fisetin reduces ovalbumin-triggered airway remodeling by preventing phenotypic switching of airway smooth muscle cells.\",\"authors\":\"Yuanyuan Liu, Qiling Yin, Bin Liu, Zheng Lu, Meijun Liu, Ling Meng, Chao He, Jin Chang\",\"doi\":\"10.1186/s12931-024-03005-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The transformation of airway smooth muscle cells (ASMCs) from a quiescent phenotype to a hypersecretory and hypercontractile phenotype is a defining feature of asthmatic airway remodeling. Fisetin, a flavonoid compound, possesses anti-inflammatory characteristics in asthma; yet, its impact on airway remodeling and ASMCs phenotype transition has not been investigated.</p><p><strong>Objectives: </strong>This research seeked to assess the impact of fisetin on ovalbumin (OVA) induced asthmatic airway remodeling and ASMCs phenotype transition, and clarify the mechanisms through network pharmacology predictions as well as in vivo and in vitro validation.</p><p><strong>Methods: </strong>First, a fisetin-asthma-ASMCs network was constructed to identify potential targets. Subsequently, cellular and animal studies were carried out to examine the inhibitory effects of fisetin on airway remodeling in asthmatic mice, and to detemine how fisetin impacts the phenotypic transition of ASMCs.</p><p><strong>Results: </strong>Network analysis indicated that fisetin might affect asthma via mediating the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) pathway. Intraperitoneal administration of fisetin in vivo reduced airway inflammation and remodeling, as shown by reduced inflammatory cells, decreased T helper type 2 (Th2) cytokine release, diminished collagen accumulation, mitigated airway smooth muscle thickening, and decreased expression of osteopontin (OPN), collagen-I and α-smooth muscle actin (α-SMA). Moreover, fisetin suppressed the PI3K/AKT pathway in asthmatic lung tissue. According to the in vitro data, fisetin downregulated the expression of the synthetic phenotypic proteins OPN and collagen-I, contractile protein α-SMA, and inhibited cellular migration, potentially through the PI3K/AKT pathway.</p><p><strong>Conclusion: </strong>These results suggest that fisetin inhibits airway remodeling in asthma by regulating ASMCs phenotypic shift, emphasizing that fisetin is a promising candidate for the treatment of airway smooth muscle remodeling.</p>\",\"PeriodicalId\":49131,\"journal\":{\"name\":\"Respiratory Research\",\"volume\":\"25 1\",\"pages\":\"370\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479573/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Respiratory Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12931-024-03005-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-03005-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Fisetin reduces ovalbumin-triggered airway remodeling by preventing phenotypic switching of airway smooth muscle cells.
Background: The transformation of airway smooth muscle cells (ASMCs) from a quiescent phenotype to a hypersecretory and hypercontractile phenotype is a defining feature of asthmatic airway remodeling. Fisetin, a flavonoid compound, possesses anti-inflammatory characteristics in asthma; yet, its impact on airway remodeling and ASMCs phenotype transition has not been investigated.
Objectives: This research seeked to assess the impact of fisetin on ovalbumin (OVA) induced asthmatic airway remodeling and ASMCs phenotype transition, and clarify the mechanisms through network pharmacology predictions as well as in vivo and in vitro validation.
Methods: First, a fisetin-asthma-ASMCs network was constructed to identify potential targets. Subsequently, cellular and animal studies were carried out to examine the inhibitory effects of fisetin on airway remodeling in asthmatic mice, and to detemine how fisetin impacts the phenotypic transition of ASMCs.
Results: Network analysis indicated that fisetin might affect asthma via mediating the phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) pathway. Intraperitoneal administration of fisetin in vivo reduced airway inflammation and remodeling, as shown by reduced inflammatory cells, decreased T helper type 2 (Th2) cytokine release, diminished collagen accumulation, mitigated airway smooth muscle thickening, and decreased expression of osteopontin (OPN), collagen-I and α-smooth muscle actin (α-SMA). Moreover, fisetin suppressed the PI3K/AKT pathway in asthmatic lung tissue. According to the in vitro data, fisetin downregulated the expression of the synthetic phenotypic proteins OPN and collagen-I, contractile protein α-SMA, and inhibited cellular migration, potentially through the PI3K/AKT pathway.
Conclusion: These results suggest that fisetin inhibits airway remodeling in asthma by regulating ASMCs phenotypic shift, emphasizing that fisetin is a promising candidate for the treatment of airway smooth muscle remodeling.
期刊介绍:
Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases.
As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion.
Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.