{"title":"光诱导隐色素 2 的液-液相分离和 mRNA 甲基化。","authors":"Bochen Jiang","doi":"10.1111/nph.20201","DOIUrl":null,"url":null,"abstract":"<p>Light is essential not only for photosynthesis but also for the regulation of various physiological and developmental processes in plants. While the mechanisms by which light regulates transcription and protein stability are well established, the effects of light on RNA methylation and their subsequent impact on plant growth and development are less understood. Upon exposure to blue light, the photoreceptor cryptochromes form nuclear speckles or nuclear bodies, termed CRY photobodies. The CRY2 photobodies undergo light-induced homo-oligomerization and liquid–liquid phase separation (LLPS), which are crucial for their physiological activity. Recent studies have proposed that blue light-induced CRY2 LLPS increases the local concentration or directly enhances the biochemical activities of RNA N6-methyladenosine (m<sup>6</sup>A) methyltransferases, thus, to regulate circadian clock and maintain Chl homeostasis through processes of RNA decay or translation. This review aimed to elucidate the functions of CRY2 and LLPS in RNA methylation, focusing on the light-controlled reversible phase transitions regulon and the outstanding questions that remain in RNA methylation.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"244 6","pages":"2163-2169"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20201","citationCount":"0","resultStr":"{\"title\":\"Light-induced cryptochrome 2 liquid–liquid phase separation and mRNA methylation\",\"authors\":\"Bochen Jiang\",\"doi\":\"10.1111/nph.20201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Light is essential not only for photosynthesis but also for the regulation of various physiological and developmental processes in plants. While the mechanisms by which light regulates transcription and protein stability are well established, the effects of light on RNA methylation and their subsequent impact on plant growth and development are less understood. Upon exposure to blue light, the photoreceptor cryptochromes form nuclear speckles or nuclear bodies, termed CRY photobodies. The CRY2 photobodies undergo light-induced homo-oligomerization and liquid–liquid phase separation (LLPS), which are crucial for their physiological activity. Recent studies have proposed that blue light-induced CRY2 LLPS increases the local concentration or directly enhances the biochemical activities of RNA N6-methyladenosine (m<sup>6</sup>A) methyltransferases, thus, to regulate circadian clock and maintain Chl homeostasis through processes of RNA decay or translation. This review aimed to elucidate the functions of CRY2 and LLPS in RNA methylation, focusing on the light-controlled reversible phase transitions regulon and the outstanding questions that remain in RNA methylation.</p>\",\"PeriodicalId\":214,\"journal\":{\"name\":\"New Phytologist\",\"volume\":\"244 6\",\"pages\":\"2163-2169\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.20201\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Phytologist\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/nph.20201\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.20201","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Light-induced cryptochrome 2 liquid–liquid phase separation and mRNA methylation
Light is essential not only for photosynthesis but also for the regulation of various physiological and developmental processes in plants. While the mechanisms by which light regulates transcription and protein stability are well established, the effects of light on RNA methylation and their subsequent impact on plant growth and development are less understood. Upon exposure to blue light, the photoreceptor cryptochromes form nuclear speckles or nuclear bodies, termed CRY photobodies. The CRY2 photobodies undergo light-induced homo-oligomerization and liquid–liquid phase separation (LLPS), which are crucial for their physiological activity. Recent studies have proposed that blue light-induced CRY2 LLPS increases the local concentration or directly enhances the biochemical activities of RNA N6-methyladenosine (m6A) methyltransferases, thus, to regulate circadian clock and maintain Chl homeostasis through processes of RNA decay or translation. This review aimed to elucidate the functions of CRY2 and LLPS in RNA methylation, focusing on the light-controlled reversible phase transitions regulon and the outstanding questions that remain in RNA methylation.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.