{"title":"用流体和固体传热法对反射镜进行热分析。","authors":"Zhen Wang, Fang Liu, Chaofan Xue","doi":"10.1107/S1600577524008749","DOIUrl":null,"url":null,"abstract":"<p><p>High-repetition-rate free-electron lasers impose stringent requirements on the thermal deformation of beamline optics. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To deeply study the thermal field of the first reflection mirror M1 at the FEL-II beamline of SHINE, thermal analysis under a photon energy of 400 eV was executed by fluid and solid heat transfer method. According to the thermal analysis results and the reference cooling water temperature of 30 °C, the temperature of the cooling water at the flow outlet is raised by 0.15 °C, and the wall temperature of the cooling tube increases by a maximum of 0.5 °C. The maximum temperature position of the footprint centerline in the meridian direction deviates away from the central position, and this asymmetrical temperature distribution will directly affect the thermal deformation of the mirror and indirectly affect the focus spot of the beam at the sample.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1576-1581"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542646/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thermal analysis of a reflection mirror by fluid and solid heat transfer method.\",\"authors\":\"Zhen Wang, Fang Liu, Chaofan Xue\",\"doi\":\"10.1107/S1600577524008749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-repetition-rate free-electron lasers impose stringent requirements on the thermal deformation of beamline optics. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To deeply study the thermal field of the first reflection mirror M1 at the FEL-II beamline of SHINE, thermal analysis under a photon energy of 400 eV was executed by fluid and solid heat transfer method. According to the thermal analysis results and the reference cooling water temperature of 30 °C, the temperature of the cooling water at the flow outlet is raised by 0.15 °C, and the wall temperature of the cooling tube increases by a maximum of 0.5 °C. The maximum temperature position of the footprint centerline in the meridian direction deviates away from the central position, and this asymmetrical temperature distribution will directly affect the thermal deformation of the mirror and indirectly affect the focus spot of the beam at the sample.</p>\",\"PeriodicalId\":48729,\"journal\":{\"name\":\"Journal of Synchrotron Radiation\",\"volume\":\" \",\"pages\":\"1576-1581\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542646/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Synchrotron Radiation\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1107/S1600577524008749\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577524008749","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
高重复率自由电子激光器对光束线光学器件的热变形提出了严格要求。上海高重复率 XFEL aNd 极强光设施(SHINE)的平均热功率很高,要求波前保持。为了深入研究上海光机所 FEL-II 光束线第一反射镜 M1 的热场,采用流体和固体传热方法对其进行了 400 eV 光子能量下的热分析。根据热分析结果和 30 °C 的参考冷却水温度,水流出口处的冷却水温度升高了 0.05 °C,冷却管的管壁温度最高升高了 0.5 °C。脚印中心线在子午线方向上的最高温度位置偏离了中心位置,这种不对称的温度分布将直接影响反射镜的热变形,并间接影响光束在样品处的聚焦点。
Thermal analysis of a reflection mirror by fluid and solid heat transfer method.
High-repetition-rate free-electron lasers impose stringent requirements on the thermal deformation of beamline optics. The Shanghai HIgh-repetition-rate XFEL aNd Extreme light facility (SHINE) experiences high average thermal power and demands wavefront preservation. To deeply study the thermal field of the first reflection mirror M1 at the FEL-II beamline of SHINE, thermal analysis under a photon energy of 400 eV was executed by fluid and solid heat transfer method. According to the thermal analysis results and the reference cooling water temperature of 30 °C, the temperature of the cooling water at the flow outlet is raised by 0.15 °C, and the wall temperature of the cooling tube increases by a maximum of 0.5 °C. The maximum temperature position of the footprint centerline in the meridian direction deviates away from the central position, and this asymmetrical temperature distribution will directly affect the thermal deformation of the mirror and indirectly affect the focus spot of the beam at the sample.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.