S. Lewis , F. Bhyat , Y. Casmod , A. Gani , L. Gumede , A. Hajat , L. Hazell , C. Kammies , T.B. Mahlaola , L. Mokoena , L. Vermeulen
{"title":"医学影像和放射科学专业学生使用人工智能进行学习和评估。","authors":"S. Lewis , F. Bhyat , Y. Casmod , A. Gani , L. Gumede , A. Hajat , L. Hazell , C. Kammies , T.B. Mahlaola , L. Mokoena , L. Vermeulen","doi":"10.1016/j.radi.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Artificial intelligence has permeated all aspects of our existence, and medical imaging has shown the burgeoning use of artificial intelligence in clinical environments. However, there are limited empirical studies on radiography students' use of artificial intelligence for learning and assessment. Therefore, this study aimed to gain an understanding of this phenomenon.</div></div><div><h3>Methods</h3><div>The study used a qualitative explorative and descriptive research design. Data was obtained through five focus group interviews with purposively sampled undergraduate medical imaging and radiation science students at a single higher education institution in South Africa. Verbatim transcripts of the audio-recorded interviews were analysed thematically.</div></div><div><h3>Results</h3><div>Three themes and related subthemes were developed: 1) understanding artificial intelligence, 2) experiences with the use of artificial intelligence with the subthemes of the use of artificial intelligence in theoretical and clinical learning and challenges of using artificial intelligence, and 3) incorporation of artificial intelligence in undergraduate medical imaging and radiation sciences education with the subthemes of student education, ethical considerations and responsible use and curriculum integration of artificial intelligence in relation to learning and assessment.</div></div><div><h3>Conclusion</h3><div>Participants used artificial intelligence for learning and assessment by generating ideas to enhance academic writing, as a learning tool, finding literature, language translation and for enhanced efficiency. Simulation-based artificial intelligence supports students' clinical learning, and artificial intelligence within the clinical departments assists with improved patient outcomes. However, participants expressed concerns about the reliability and ethical implications of artificial intelligence-generated information. To address these concerns, participants suggested integrating artificial intelligence into medical imaging and radiation sciences education, where educators need to educate students on the responsible use of artificial intelligence in learning and consider artificial intelligence in assessments.</div></div><div><h3>Implications for practice</h3><div>The study findings contribute to understanding medical imaging and radiation sciences students’ use of artificial intelligence and may be used to develop evidence-based strategies for integrating artificial intelligence into the curriculum to enhance medical imaging and radiation sciences education and support students.</div></div>","PeriodicalId":47416,"journal":{"name":"Radiography","volume":"30 ","pages":"Pages 60-66"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medical imaging and radiation science students' use of artificial intelligence for learning and assessment\",\"authors\":\"S. Lewis , F. Bhyat , Y. Casmod , A. Gani , L. Gumede , A. Hajat , L. Hazell , C. Kammies , T.B. Mahlaola , L. Mokoena , L. Vermeulen\",\"doi\":\"10.1016/j.radi.2024.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><div>Artificial intelligence has permeated all aspects of our existence, and medical imaging has shown the burgeoning use of artificial intelligence in clinical environments. However, there are limited empirical studies on radiography students' use of artificial intelligence for learning and assessment. Therefore, this study aimed to gain an understanding of this phenomenon.</div></div><div><h3>Methods</h3><div>The study used a qualitative explorative and descriptive research design. Data was obtained through five focus group interviews with purposively sampled undergraduate medical imaging and radiation science students at a single higher education institution in South Africa. Verbatim transcripts of the audio-recorded interviews were analysed thematically.</div></div><div><h3>Results</h3><div>Three themes and related subthemes were developed: 1) understanding artificial intelligence, 2) experiences with the use of artificial intelligence with the subthemes of the use of artificial intelligence in theoretical and clinical learning and challenges of using artificial intelligence, and 3) incorporation of artificial intelligence in undergraduate medical imaging and radiation sciences education with the subthemes of student education, ethical considerations and responsible use and curriculum integration of artificial intelligence in relation to learning and assessment.</div></div><div><h3>Conclusion</h3><div>Participants used artificial intelligence for learning and assessment by generating ideas to enhance academic writing, as a learning tool, finding literature, language translation and for enhanced efficiency. Simulation-based artificial intelligence supports students' clinical learning, and artificial intelligence within the clinical departments assists with improved patient outcomes. However, participants expressed concerns about the reliability and ethical implications of artificial intelligence-generated information. To address these concerns, participants suggested integrating artificial intelligence into medical imaging and radiation sciences education, where educators need to educate students on the responsible use of artificial intelligence in learning and consider artificial intelligence in assessments.</div></div><div><h3>Implications for practice</h3><div>The study findings contribute to understanding medical imaging and radiation sciences students’ use of artificial intelligence and may be used to develop evidence-based strategies for integrating artificial intelligence into the curriculum to enhance medical imaging and radiation sciences education and support students.</div></div>\",\"PeriodicalId\":47416,\"journal\":{\"name\":\"Radiography\",\"volume\":\"30 \",\"pages\":\"Pages 60-66\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1078817424003043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1078817424003043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Medical imaging and radiation science students' use of artificial intelligence for learning and assessment
Introduction
Artificial intelligence has permeated all aspects of our existence, and medical imaging has shown the burgeoning use of artificial intelligence in clinical environments. However, there are limited empirical studies on radiography students' use of artificial intelligence for learning and assessment. Therefore, this study aimed to gain an understanding of this phenomenon.
Methods
The study used a qualitative explorative and descriptive research design. Data was obtained through five focus group interviews with purposively sampled undergraduate medical imaging and radiation science students at a single higher education institution in South Africa. Verbatim transcripts of the audio-recorded interviews were analysed thematically.
Results
Three themes and related subthemes were developed: 1) understanding artificial intelligence, 2) experiences with the use of artificial intelligence with the subthemes of the use of artificial intelligence in theoretical and clinical learning and challenges of using artificial intelligence, and 3) incorporation of artificial intelligence in undergraduate medical imaging and radiation sciences education with the subthemes of student education, ethical considerations and responsible use and curriculum integration of artificial intelligence in relation to learning and assessment.
Conclusion
Participants used artificial intelligence for learning and assessment by generating ideas to enhance academic writing, as a learning tool, finding literature, language translation and for enhanced efficiency. Simulation-based artificial intelligence supports students' clinical learning, and artificial intelligence within the clinical departments assists with improved patient outcomes. However, participants expressed concerns about the reliability and ethical implications of artificial intelligence-generated information. To address these concerns, participants suggested integrating artificial intelligence into medical imaging and radiation sciences education, where educators need to educate students on the responsible use of artificial intelligence in learning and consider artificial intelligence in assessments.
Implications for practice
The study findings contribute to understanding medical imaging and radiation sciences students’ use of artificial intelligence and may be used to develop evidence-based strategies for integrating artificial intelligence into the curriculum to enhance medical imaging and radiation sciences education and support students.
RadiographyRADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.70
自引率
34.60%
发文量
169
审稿时长
63 days
期刊介绍:
Radiography is an International, English language, peer-reviewed journal of diagnostic imaging and radiation therapy. Radiography is the official professional journal of the College of Radiographers and is published quarterly. Radiography aims to publish the highest quality material, both clinical and scientific, on all aspects of diagnostic imaging and radiation therapy and oncology.