Andrew J Lee PhD , Stephen Carson PhD , Marina I Reyne PhD , Andrew Marshall PhD , Daniel Moody PhD , Danielle M Allen PhD , Pearce Allingham MSc , Ashley Levickas BSc , Arthur Fitzgerald MSc , Stephen H Bell PhD , Jonathan Lock MSc , Jonathon D Coey PhD , Cormac McSparron PhD , Behnam F Nejad PhD , Evan P Troendle PhD , Prof David A Simpson PhD , David G Courtney PhD , Gisli G Einarsson PhD , James P McKenna PhD , Derek J Fairley PhD , Connor G G Bamford PhD
{"title":"北爱尔兰人和禽类甲型流感病毒的废水监测:基因组监测研究。","authors":"Andrew J Lee PhD , Stephen Carson PhD , Marina I Reyne PhD , Andrew Marshall PhD , Daniel Moody PhD , Danielle M Allen PhD , Pearce Allingham MSc , Ashley Levickas BSc , Arthur Fitzgerald MSc , Stephen H Bell PhD , Jonathan Lock MSc , Jonathon D Coey PhD , Cormac McSparron PhD , Behnam F Nejad PhD , Evan P Troendle PhD , Prof David A Simpson PhD , David G Courtney PhD , Gisli G Einarsson PhD , James P McKenna PhD , Derek J Fairley PhD , Connor G G Bamford PhD","doi":"10.1016/S2666-5247(24)00175-7","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Influenza A viruses (IAVs) are significant pathogens of humans and other animals. Although endemic in humans and birds, novel IAV strains can emerge, jump species, and cause epidemics, like the latest variant of H5N1. Wastewater-based epidemiology (WBE) has been shown capable of detecting human IAVs. We aimed to assess whether whole-genome sequencing (WGS) of IAVs from wastewater is possible and can be used to discriminate between circulating strains of human and any non-human IAVs, such as those of avian origin.</div></div><div><h3>Methods</h3><div>Using a pan-IAV RT-quantitative PCR assay, six wastewater treatment works (WWTWs) across Northern Ireland were screened from Aug 1 to Dec 5, 2022. A nanopore WGS approach was used to sequence RT-qPCR-positive samples. Phylogenetic analysis of sequences relative to currently circulating human and non-human IAVs was performed. For comparative purposes, clinical data (PCR test results) were supplied by The Regional Virus Laboratory, Belfast Health and Social Care Trust (Belfast, Northern Ireland, UK).</div></div><div><h3>Findings</h3><div>We detected a dynamic IAV signal in wastewater from Sept 5, 2022, onwards across Northern Ireland, which did not show a clear positive relationship with the clinical data obtained for the region. Meta (mixed strain) whole-genome sequences were generated from wastewater samples displaying homology to only human and avian IAV strains. The relative proportion of IAV reads of human versus avian origin differed across time and sample site. A diversity in subtypes and lineages was detected (eg, H1N1, H3N2, and several avian). Avian segment 8 related to those found in recent H5N1 clade 2.3.4.4b was identified.</div></div><div><h3>Interpretation</h3><div>WBE affords a means to monitor circulating human and avian IAV strains and provide crucial genetic information. As such, WBE can provide rapid, cost-effective, year-round One Health surveillance to help control IAV epidemic and pandemic-related threats. However, optimisation of WBE protocols are necessary to ensure observed wastewater signals not only correlate with clinical case data, but yield information on the wider environmental pan-influenz-ome.</div></div><div><h3>Funding</h3><div>Department of Health for Northern Ireland.</div></div>","PeriodicalId":46633,"journal":{"name":"Lancet Microbe","volume":"5 12","pages":"Article 100933"},"PeriodicalIF":20.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wastewater monitoring of human and avian influenza A viruses in Northern Ireland: a genomic surveillance study\",\"authors\":\"Andrew J Lee PhD , Stephen Carson PhD , Marina I Reyne PhD , Andrew Marshall PhD , Daniel Moody PhD , Danielle M Allen PhD , Pearce Allingham MSc , Ashley Levickas BSc , Arthur Fitzgerald MSc , Stephen H Bell PhD , Jonathan Lock MSc , Jonathon D Coey PhD , Cormac McSparron PhD , Behnam F Nejad PhD , Evan P Troendle PhD , Prof David A Simpson PhD , David G Courtney PhD , Gisli G Einarsson PhD , James P McKenna PhD , Derek J Fairley PhD , Connor G G Bamford PhD\",\"doi\":\"10.1016/S2666-5247(24)00175-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Influenza A viruses (IAVs) are significant pathogens of humans and other animals. Although endemic in humans and birds, novel IAV strains can emerge, jump species, and cause epidemics, like the latest variant of H5N1. Wastewater-based epidemiology (WBE) has been shown capable of detecting human IAVs. We aimed to assess whether whole-genome sequencing (WGS) of IAVs from wastewater is possible and can be used to discriminate between circulating strains of human and any non-human IAVs, such as those of avian origin.</div></div><div><h3>Methods</h3><div>Using a pan-IAV RT-quantitative PCR assay, six wastewater treatment works (WWTWs) across Northern Ireland were screened from Aug 1 to Dec 5, 2022. A nanopore WGS approach was used to sequence RT-qPCR-positive samples. Phylogenetic analysis of sequences relative to currently circulating human and non-human IAVs was performed. For comparative purposes, clinical data (PCR test results) were supplied by The Regional Virus Laboratory, Belfast Health and Social Care Trust (Belfast, Northern Ireland, UK).</div></div><div><h3>Findings</h3><div>We detected a dynamic IAV signal in wastewater from Sept 5, 2022, onwards across Northern Ireland, which did not show a clear positive relationship with the clinical data obtained for the region. Meta (mixed strain) whole-genome sequences were generated from wastewater samples displaying homology to only human and avian IAV strains. The relative proportion of IAV reads of human versus avian origin differed across time and sample site. A diversity in subtypes and lineages was detected (eg, H1N1, H3N2, and several avian). Avian segment 8 related to those found in recent H5N1 clade 2.3.4.4b was identified.</div></div><div><h3>Interpretation</h3><div>WBE affords a means to monitor circulating human and avian IAV strains and provide crucial genetic information. As such, WBE can provide rapid, cost-effective, year-round One Health surveillance to help control IAV epidemic and pandemic-related threats. However, optimisation of WBE protocols are necessary to ensure observed wastewater signals not only correlate with clinical case data, but yield information on the wider environmental pan-influenz-ome.</div></div><div><h3>Funding</h3><div>Department of Health for Northern Ireland.</div></div>\",\"PeriodicalId\":46633,\"journal\":{\"name\":\"Lancet Microbe\",\"volume\":\"5 12\",\"pages\":\"Article 100933\"},\"PeriodicalIF\":20.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Microbe\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666524724001757\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Microbe","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666524724001757","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Wastewater monitoring of human and avian influenza A viruses in Northern Ireland: a genomic surveillance study
Background
Influenza A viruses (IAVs) are significant pathogens of humans and other animals. Although endemic in humans and birds, novel IAV strains can emerge, jump species, and cause epidemics, like the latest variant of H5N1. Wastewater-based epidemiology (WBE) has been shown capable of detecting human IAVs. We aimed to assess whether whole-genome sequencing (WGS) of IAVs from wastewater is possible and can be used to discriminate between circulating strains of human and any non-human IAVs, such as those of avian origin.
Methods
Using a pan-IAV RT-quantitative PCR assay, six wastewater treatment works (WWTWs) across Northern Ireland were screened from Aug 1 to Dec 5, 2022. A nanopore WGS approach was used to sequence RT-qPCR-positive samples. Phylogenetic analysis of sequences relative to currently circulating human and non-human IAVs was performed. For comparative purposes, clinical data (PCR test results) were supplied by The Regional Virus Laboratory, Belfast Health and Social Care Trust (Belfast, Northern Ireland, UK).
Findings
We detected a dynamic IAV signal in wastewater from Sept 5, 2022, onwards across Northern Ireland, which did not show a clear positive relationship with the clinical data obtained for the region. Meta (mixed strain) whole-genome sequences were generated from wastewater samples displaying homology to only human and avian IAV strains. The relative proportion of IAV reads of human versus avian origin differed across time and sample site. A diversity in subtypes and lineages was detected (eg, H1N1, H3N2, and several avian). Avian segment 8 related to those found in recent H5N1 clade 2.3.4.4b was identified.
Interpretation
WBE affords a means to monitor circulating human and avian IAV strains and provide crucial genetic information. As such, WBE can provide rapid, cost-effective, year-round One Health surveillance to help control IAV epidemic and pandemic-related threats. However, optimisation of WBE protocols are necessary to ensure observed wastewater signals not only correlate with clinical case data, but yield information on the wider environmental pan-influenz-ome.
期刊介绍:
The Lancet Microbe is a gold open access journal committed to publishing content relevant to clinical microbiologists worldwide, with a focus on studies that advance clinical understanding, challenge the status quo, and advocate change in health policy.