Ming-Hui Zhou, Ting Zhang, Rong-Ping Li, Qiao-Ling Yan
{"title":"关于光照、温度和水分条件对树木初级和次级生长的影响的研究取得了进展。","authors":"Ming-Hui Zhou, Ting Zhang, Rong-Ping Li, Qiao-Ling Yan","doi":"10.13287/j.1001-9332.202409.008","DOIUrl":null,"url":null,"abstract":"<p><p>Tree growth includes primary growth and secondary growth. The growth activity and dormancy cycle of trees can affect forest productivity and carbon sequestration capacity. Therefore, it is of great significance to examine the effects of environmental conditions (<i>e.g</i>., photoperiod, temperature and water) on tree growth for understanding the responses of trees to climate change and predicting forest productivity and carbon sequestration capacity under the background of global climate change. We reviewed the effects of photoperiod, temperature and water conditions on the primary and secondary growth of trees, and revealed the physiological mechanisms underlying their impacts on the synchronization or asynchronization between primary and secondary growth of trees. The shortcomings of the existing research were pointed out. For example, less attention had been paid to the enrionmental response and adaptation of root growth, as well as the physiological mechanism of the effect of light, temperature and water on tree growth. Research on the growth of underground roots should be strengthened in the future, and more attention should be paid to the physiological changes in the process of tree growth affected by environmental factors. Furthermore, the source and sink limitation theory and the process-based prediction model should be improved, aiming to provide a scientific basis for predicting forest productivity and carbon sequestration capacity and putting forward scientific policies of forest management.</p>","PeriodicalId":35942,"journal":{"name":"应用生态学报","volume":"35 9","pages":"2455-2462"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research progresses on the effects of light, temperature and water conditions on primary and secondary growth of trees.\",\"authors\":\"Ming-Hui Zhou, Ting Zhang, Rong-Ping Li, Qiao-Ling Yan\",\"doi\":\"10.13287/j.1001-9332.202409.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tree growth includes primary growth and secondary growth. The growth activity and dormancy cycle of trees can affect forest productivity and carbon sequestration capacity. Therefore, it is of great significance to examine the effects of environmental conditions (<i>e.g</i>., photoperiod, temperature and water) on tree growth for understanding the responses of trees to climate change and predicting forest productivity and carbon sequestration capacity under the background of global climate change. We reviewed the effects of photoperiod, temperature and water conditions on the primary and secondary growth of trees, and revealed the physiological mechanisms underlying their impacts on the synchronization or asynchronization between primary and secondary growth of trees. The shortcomings of the existing research were pointed out. For example, less attention had been paid to the enrionmental response and adaptation of root growth, as well as the physiological mechanism of the effect of light, temperature and water on tree growth. Research on the growth of underground roots should be strengthened in the future, and more attention should be paid to the physiological changes in the process of tree growth affected by environmental factors. Furthermore, the source and sink limitation theory and the process-based prediction model should be improved, aiming to provide a scientific basis for predicting forest productivity and carbon sequestration capacity and putting forward scientific policies of forest management.</p>\",\"PeriodicalId\":35942,\"journal\":{\"name\":\"应用生态学报\",\"volume\":\"35 9\",\"pages\":\"2455-2462\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"应用生态学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13287/j.1001-9332.202409.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"应用生态学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13287/j.1001-9332.202409.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Research progresses on the effects of light, temperature and water conditions on primary and secondary growth of trees.
Tree growth includes primary growth and secondary growth. The growth activity and dormancy cycle of trees can affect forest productivity and carbon sequestration capacity. Therefore, it is of great significance to examine the effects of environmental conditions (e.g., photoperiod, temperature and water) on tree growth for understanding the responses of trees to climate change and predicting forest productivity and carbon sequestration capacity under the background of global climate change. We reviewed the effects of photoperiod, temperature and water conditions on the primary and secondary growth of trees, and revealed the physiological mechanisms underlying their impacts on the synchronization or asynchronization between primary and secondary growth of trees. The shortcomings of the existing research were pointed out. For example, less attention had been paid to the enrionmental response and adaptation of root growth, as well as the physiological mechanism of the effect of light, temperature and water on tree growth. Research on the growth of underground roots should be strengthened in the future, and more attention should be paid to the physiological changes in the process of tree growth affected by environmental factors. Furthermore, the source and sink limitation theory and the process-based prediction model should be improved, aiming to provide a scientific basis for predicting forest productivity and carbon sequestration capacity and putting forward scientific policies of forest management.